Abstract:The demand for self-sufficient electronic devices is increasing as well as the overall energy use, and such demands are pushing technology forward, especially in effective energy harvesting. A novel hybrid Energy Harvesting System (EHS) has been proposed and analysed in this paper. It has been demonstrated that the EHS is capable of converting enough energy to power a typical MEMS device. This has been achieved through unification of the nine Cymbal Energy Harvester (CEH) array, as an energy harvesting core, and Shape Memory Alloy (SMA) active elements, acting as a source of force stimulated by the environmental changes. A Finite Element Model (FEM) was developed for the CEH, which was verified and used for the analysis of CEHÕs response to the change of the end-cap material. This was followed by the FEM for the EHS used for analysis of the location of SMA wires and force generated by each wire individually and then all together. As a further optimisation of the EHS a novel Wagon Wheel design was explored in terms of its energy harvesting capabilities. As expected, due to the increased displacement, an increase in the power output was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.