This paper provides a comprehensive analysis of the available EEG datasets that are used for epilepsy prediction systems, including Melbourne, CHB-MIT, American Epilepsy Society, Bonn, and European Epilepsy datasets. These datasets are compared in terms of the sampling rate, number of patients, recording time, number of channels, artifacts, and types of EEG signals. We also provide details on the challenges of using one dataset over the others in predicting epilepsy. Subsequently, we compare the performance of various machine learning models that use these datasets for epileptic seizure prediction. This is the first work that provides a comprehensive analysis of various EEG datasets and should be of great importance for researchers in EEG-based systems for epileptic seizure prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.