SARS-CoV-2 enters host cells when the viral spike protein is cleaved by transmembrane protease serine 2 (TMPRSS2) after binding to the host angiotensin-converting enzyme 2 (ACE2). Since ACE2 and TMPRSS2 are expressed in the tongue and gingival mucosa, the oral cavity is a potential entry point for SARS-CoV-2. This study evaluated the inhibitory effects of general ingredients of toothpastes and mouthwashes on the spike protein-ACE2 interaction and the TMPRSS2 protease activity using an in vitro assay. Both assays detected inhibitory effects of sodium tetradecene sulfonate, sodium N-lauroyl-N-methyltaurate, sodium N-lauroylsarcosinate, sodium dodecyl sulfate, and copper gluconate. Molecular docking simulations suggested that these ingredients could bind to inhibitor-binding site of ACE2. Furthermore, tranexamic acid exerted inhibitory effects on TMPRSS2 protease activity. Our findings suggest that these toothpaste and mouthwash ingredients could help prevent SARS-CoV-2 infection.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells when the viral spike protein is cleaved by transmembrane protease serine 2 (TMPRSS2) after binding to the host angiotensin-converting enzyme 2 (ACE2). Since ACE2 and TMPRSS2 are expressed in the mucosa of the tongue and gingiva, the oral cavity seems like it is an entry point for SARS-CoV-2. Daily oral care using mouthwash seems to play an important role in preventing SARS-CoV-2 infection. However, the relationship between daily oral care and the mechanisms of virus entry into host cells is unclear. In this study, we evaluated the inhibitory effects of ingredients that are generally contained in toothpaste and mouthwash on the interaction between the spike protein and ACE2 and on the serine protease activity of TMPRSS2 using an enzyme-linked immunosorbent assay and in vitro enzyme assay, respectively. Both assays detected inhibitory effects of sodium tetradecene sulfonate, sodium N-lauroyl-N-methyltaurate, sodium N-lauroylsarcosinate, sodium dodecyl sulfate, and copper gluconate. Molecular docking simulations suggested that these ingredients could bind to the inhibitor-binding site of ACE2. In addition, tranexamic acid and 6-aminohexanoic acid, which act as serine protease inhibitors, exerted inhibitory effects on TMPRSS2 protease activity. Further experimental and clinical studies are needed to further elucidate these mechanisms. Our findings support the possibility that toothpaste and mouthwash contain ingredients that inhibit SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.