An excellently transparent metamaterial-based electromagnetic interference (EMI) shielding window with broadband absorption is presented theoretically and demonstrated experimentally. The window is composed of double split circular ring (SCR) elements whose absorption spectra feature two mild resonant peaks. Indium–tin–oxide (ITO) with resonant patterns is utilized as the material to induce high ohmic loss and broaden the absorption bandwidth. The window achieves strong absorptivity, > 90%, covering an ultrawide frequency range of 7.8–18.0 GHz. Moreover, the measured shielding effectiveness (SE) of the window is > 18.25 dB, at 7.0–18.0 GHz, while the average optical transmittance is fixed at ∼73.10% in the visible–near-infrared (Vis–NIR) region of 400–1,500 nm. Further, the absorption mechanism is revealed by designing an equivalent circuit model and studying the distributions of the electric field and surface currents of the structure. Furthermore, a specific design feature also makes our device insensitive to the incident angle and the polarization state of the impinging microwave. The 90% absorption and shielding performance of the proposed optical window avail it for a wide range of great potential applications, such as the displays of military and medical precision devices.
Of gynecological cancers, cervical cancer has the second highest incidence globally and is a major cause of cancer‑associated mortality in women. An increasing number of studies have reported that microRNAs (miRNAs) have important roles in cervical cancer carcinogenesis and progression through regulation of various critical protein‑coding genes. The aim of the present study was to investigate the expression and biological roles of miRNA‑211 (miR‑211) in cervical cancer and its underlying molecular mechanism. The results of reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) demonstrated that the expression levels of miR‑211 in cervical cancer tissues and cell lines were significantly lower compared with adjacent normal tissues and the normal human cervix epithelial cell line, respectively. Furthermore, upregulation of miR‑211 by transfection with miR‑211 mimics inhibited cell proliferation, migration and invasion of cervical cancer, as determined by MTT, Transwell and Matrigel assays, respectively. Bioinformatics analysis and luciferase reporter assay results indicated that zinc finger E‑box binding homeobox 1 (ZEB1) may be a direct target gene of miR‑211. In addition, RT‑qPCR and western blot analysis results demonstrated that miR‑211 overexpression markedly reduced ZEB1 expression at mRNA and protein levels in cervical cancer. Furthermore, the effects of ZEB1 downregulation on the proliferation, migration and invasion of cervical cancer cells were similar to those induced by miR‑211 overexpression. These results indicate that miR‑211 may act as a tumor suppressor in cervical cancer by directly targeting ZEB1. Therefore, miR‑211/ZEB1‑based targeted therapy may represent a potential novel treatment for patients with cervical cancer.
Er3+ doped CaF2-fluorophosphate (FP) glass microcomposites were produced by heat-treating the mixture of Er3+:CaF2 precipitate and FP glass powder above the melting temperature of the FP glass. The appearance of CaF2 crystallites in the resulting composites was confirmed by x ray diffraction. Despite the fact that the average diameter of the crystallites was around 10 μm as revealed by the micromorphology study, a transparent composite was obtained by matching the refractive index of FP glass to that of CaF2. Intense IR fluorescence at around 2.7 μm was observed in the composite, implying the composite would be a promising candidate for IR lasers and amplifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.