Incredible accomplishments have been achieved in agricultural production in China, but many demanding challenges for ensuring food security and environmental sustainability remain. Field experiments were conducted from 2011–2013 at three different sites, including Honghu, Shayang, and Jingzhou in China, to determine the effects of fertilization on enhancing crop productivity and indigenous nutrient-supplying capacity (INuS) in a rice (Oryza sativa L.)-rapeseed (Brassica napus L.) rotation. Four mineral fertilizer treatments (NPK, NP, NK and PK) were applied in a randomized complete block design with three replicates. Crop yields were increased by 19–41% (rice) and 61–76% (rapeseed) during the two years of rice-rapeseed rotation under NPK fertilization compared to PK fertilization across the study sites. Yield responses to fertilization were ranked NPK > NP > NK > PK, illustrating that N deficiency was the most limiting condition in a rice-rapeseed rotation, followed by P and K deficiencies. The highest and lowest N, P and K accumulations were observed under NPK and PK fertilization, respectively. The INuS of the soil decreased to a significant extent and affected rice-rapeseed rotation productivity at each site under NP, NK, and PK fertilization when compared to NPK. Based on the study results, a balanced nutrient application using NPK fertilization is a key management strategy for enhancing rice-rapeseed productivity and environmental safety.
Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (g ) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining g have been quantified; however, anatomical variabilities related to low g under K starvation remain imperfectly known. A one-dimensional model was used to quantify anatomical controls of the entire CO diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down-regulated g . The mesophyll conductance limitation contributed to more than one-half of A decline. The decreased internal air space in K-starved leaves was associated with the increase of gas-phase resistance. Potassium deficiency reduced liquid-phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (S /S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of g variations, ascribing to an altered S /S. These results emphasize the important role of K on the regulation of g by enhancing S /S and reducing cytoplasm resistance.
Optimal storage nitrogen (N) content in the leaf is critical to co-ordinate leaf expansion and photosynthetic capacity. Turnover between storage N and photosynthetic N could maintain a high photosynthetic rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.