We describe a new method for imaging leukocytes in vivo by exciting the endogenous protein fluorescence in the ultraviolet (UV) spectral region where tryptophan is the major fluorophore. Two-photon excitation near 590 nm allows noninvasive optical sectioning through the epidermal cell layers into the dermis of mouse skin, where leukocytes can be observed by video-rate microscopy to interact dynamically with the dermal vascular endothelium. Inflammation significantly enhances leukocyte rolling, adhesion, and tissue infiltration. After exiting the vasculature, leukocytes continue to move actively in tissue as observed by time-lapse microscopy, and are distinguishable from resident autofluorescent cells that are not motile. Because the new method alleviates the need to introduce exogenous labels, it is potentially applicable for tracking leukocytes and monitoring inflammatory cellular reactions in humans.
We describe a new method of cell destruction that may have potential for use in antitumor therapy. Cells are loaded by phagocytosis with microparticles (<1 microm) and irradiated with short laser pulses. Absorption of laser energy by the microparticles causes localized vaporization of the fluid surrounding the microparticles, leading to the generation of transient vapor bubbles (microcavitation) around the microparticles. Using cultures of bovine aortic endothelial cells, we demonstrate that induction of intralysosomal microcavitation is an efficient, rapid and selective method of cell killing that is dependent on the number of microparticles, the number of laser pulses, and the fluence of the laser pulses. Cell killing by microcavitation is a very selective process that is restricted to cells containing microparticles, leaving other cells unaffected. Intracytoplasmic release of lysosomal hydrolases is, in part, responsible for cell death, because the protease inhibitors E64d and TLCK diminished cell killing. Using the broad-specificity caspase inhibitor Z-VAD-fmk, we determined that lysosomal hydrolases could induce apoptosis in a caspase-independent manner. We also examined the possibility of microcavitation-induced delayed effects in the cells that survived the treatment. Using flow cytometry, we determined that there was no delayed cell death between 1 and 4 days after microcavitation. Moreover, we did not observe changes in the cell cycle, in expression of the proteins BCL2, HSP70 and HSP27, or in PARP degradation. In conclusion, microcavitation induces rapid and specific cells death (limited only to cells containing microparticles), without producing delayed effects among the surviving cells.
Our results suggest that UVA radiation appears to alter the adhesive properties of melanoma cells in vitro, by diminishing the melanoma-melanoma adhesion and by increasing melanoma adhesion to the endothelium. This suggests that UVA exposure might increase the metastatic capability of the melanoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.