Meeting the multimillion hectare commitments for forest and landscape restoration (FLR) will require billions of tree seed and seedlings. However, the adequacy of seed supply in terms of quantity, genetic diversity and quality has received scant attention in FLR planning. We surveyed 139 FLR projects worldwide and identified widespread problems in the availability and diversity of tree seed, with potentially deleterious consequences for the vigor, productivity and long-term persistence of restored tree populations. Large projects and those focused on climate change mitigation were particularly associated with multiple problems in seed sourcing. To avoid large-scale failure in FLR, we recommend: (1) national assessments of seed supply and demand for FLR, (2) reviewing FLR targets and funding cycles, (3) fostering sharing of knowledge and experiences regarding seed supply and selection, (4) enhancing seed exchange across landscapes, and (5) introducing regulations for seed quality and strengthening capacities for compliance.
While attention on logging in the tropics has been increasing, studies on the long-term effects of silviculture on forest dynamics and ecology remain scare and spatially limited. Indeed, most of our knowledge on tropical forests arises from studies carried out in undisturbed tropical forests. This bias is problematic given that logged and disturbed tropical forests are now covering a larger area than the so-called primary forests. A new network of permanent sample plots in logged forests, the Tropical managed Forests Observatory (TmFO), aims to fill this gap by providing unprecedented opportunities to examine long-term data on the resilience of logged tropical forests at regional and global scales. TmFO currently includes 24 experimental sites distributed across three tropical regions, with a total of 490 permanent plots and 921 ha of forest inventories.
At the start of the UN Decade of Ecosystem Restoration (2021–2030), the restoration of degraded ecosystems is more than ever a global priority. Tree planting will make up a large share of the ambitious restoration commitments made by countries around the world, but careful planning is needed to select species and seed sources that are suitably adapted to present and future restoration site conditions and that meet the restoration objectives.
Here we present a scalable and freely available online tool, Diversity for Restoration (D4R), to identify suitable tree species and seed sources for climate‐resilient tropical forest landscape restoration.
The D4R tool integrates (a) species habitat suitability maps under current and future climatic conditions; (b) analysis of functional trait data, local ecological knowledge and other species characteristics to score how well species match the restoration site conditions and restoration objectives; (c) optimization of species combinations and abundances considering functional trait diversity or phylogenetic diversity, to foster complementarity between species and to ensure ecosystem multifunctionality and stability; and (d) development of seed zone maps to guide sourcing of planting material adapted to present and predicted future environmental conditions. We outline the various elements behind the tool and discuss how it fits within the broader restoration planning process, including a review of other existing tools.
Synthesis and applications. The Diversity for Restoration tool enables non‐expert users to combine species traits, environmental data and climate change models to select tree species and seed sources that best match restoration site conditions and restoration objectives. Originally developed for the tropical dry forests of Colombia, the tool has now been expanded to the tropical dry forests of northwestern Peru–southern Ecuador and the countries of Burkina Faso and Cameroon, and further expansion is underway. Acknowledging that restoration has a wide range of meanings and goals, our tool is intended to support decision making of anyone interested in tree planting and seed sourcing in tropical forest landscapes, regardless of the purpose or restoration approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.