Bioenergy from forest residues can be used to avoid fossil carbon emissions, but removing biomass from forests reduces carbon stock sizes and carbon input to litter and soil. The magnitude and longevity of these carbon stock changes determine how effective measures to utilize bioenergy from forest residues are to reduce greenhouse gas (GHG) emissions from the energy sector and to mitigate climate change. In this study, we estimate the variability of GHG emissions and consequent climate impacts resulting from producing bioenergy from stumps, branches and residual biomass of forest thinning operations in Finland, and the contribution of the variability in key factors, i.e. forest residue diameter, tree species, geographical location of the forest biomass removal site and harvesting method, to the emissions and their climate impact. The GHG emissions and the consequent climate impacts estimated as changes in radiative forcing were comparable to fossil fuels when bioenergy production from forest residues was initiated. The emissions and climate impacts decreased over time because forest residues were predicted to decompose releasing CO 2 even if left in the forest. Both were mainly affected by forest residue diameter and climatic conditions of the forest residue collection site. Tree species and the harvest method of thinning wood (whole tree or stem-only) had a smaller effect on the magnitude of emissions. The largest reduction in the energy production climate impacts after 20 years, up to 62%, was achieved when coal was replaced by the branches collected from Southern Finland, whereas the smallest reduction 7% was gained by using stumps from Northern Finland instead of natural gas. After 100 years the corresponding values were 77% and 21%. The choice of forest residue biomass collected affects significantly the emissions and climate impacts of forest bioenergy.
Greening the economy has been widely discussed as a new strategy for simultaneously reducing environmental pressures, promoting economic growth and enhancing social well-being. Indicators are one tool that can be used to describe the development of green growth. This paper presents and evaluates the process of attempting to build a set of policy-relevant key indicators of green growth for Finland. The challenges of developing a cross-scale indicator set integrating different sectors and levels of society are identified and discussed. It is argued that both the experts preparing the indicators and the potential users will benefit from a collaborative process that aims not only to build a shared awareness of the key issues of green growth but also to foster a realistic understanding of the strengths and weaknesses of the indicator approach. Key challenges include data availability, right balance between different indicator selection criteria, systemic understanding of the relationships between indicators, and the variable usage contexts of the indicators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.