The detachment kinetics from actin upon ATP binding is a key step in the reaction cycle of myosin V. We show that a network of residues, constituting the allostery wiring diagram (AWD), that trigger the rigor (R) to post-rigor (PR) transition, span key structural elements from the ATP and actin-binding regions. Several of the residues are in the 33 residue helix (H18), P loop, and switch I. Brownian dynamics simulations show that a hierarchy of kinetically controlled local structural changes leads to the opening of the "cleft" region, resulting in the detachment of the motor domain from actin. Movements in switch I and P loop facilitate changes in the rest of the motor domain, in particular the rotation of H18, whose stiffness within the motor domain is crucial in the R --> PR transition. The finding that residues in the AWD also drive the kinetics of the R --> PR transition shows how the myosin architecture regulates the allosteric movements during the reaction cycle.
The physical effects associated with the implementation of two different types of thermal (or stochastic) walls that could be used in computer simulations are considered. The effects of these boundary conditions are first demonstrated using the ideal-gas model and then their influence on interacting particles (with an example of hard spheres) is discussed
The molecular motor myosin V (MyoV) exhibits a wide repertoire of pathways during the stepping process, which is intimately connected to its biological function. The best understood of these is the hand-over-hand stepping by a swinging lever arm movement toward the plus end of actin filaments. Single-molecule experiments have also shown that the motor "foot stomps," with one hand detaching and rebinding to the same site, and back-steps under sufficient load. The complete taxonomy of MyoV's load-dependent stepping pathways, and the extent to which these are constrained by motor structure and mechanochemistry, are not understood. Using a polymer model, we develop an analytical theory to describe the minimal physical properties that govern motor dynamics. We solve the first-passage problem of the head reaching the target-binding site, investigating the competing effects of backward load, strain in the leading head biasing the diffusion in the direction of the target, and the possibility of preferential binding to the forward site due to the recovery stroke. The theory reproduces a variety of experimental data, including the power stroke and slow diffusive search regimes in the mean trajectory of the detached head, and the force dependence of the forward-to-backward step ratio, run length, and velocity. We derive a stall force formula, determined by lever arm compliance and chemical cycle rates. By exploring the MyoV design space, we predict that it is a robust motor whose dynamical behavior is not compromised by reasonable perturbations to the reaction cycle and changes in the architecture of the lever arm.functional robustness | polymer physics | architectural basis | stall force expression M yosin V (MyoV), a cytoskeletal motor protein belonging to the myosin superfamily (1), converts energy from ATP hydrolysis into the transport of intracellular cargo, such as mRNA and organelles along actin filaments (2). In its dimeric form, the motor has two actin-binding, ATPase heads connected to α-helical lever arm domains stiffened by attached calmodulins or essential light chains (Fig. 1). The nucleotide-driven mechanochemical cycle of the heads produces two changes in the lever arm orientation: a power stroke, where an actin-bound head swings the lever arm forward toward the plus (barbed) end of the filament, and a recovery stroke, which returns the arm to its original configuration when the head is detached from actin (3). The motor translates these changes into processive plus end-directed movement (4-6). By alternating head detachment, MyoV walks hand-over-hand (7,8), taking one step of ≈36 nm for each ATP consumed (9). At small loads, the motor can complete ≈20 − 60 forward steps before dissociating from actin (6, 10, 11). Such a high unidirectional processivity requires coordination in the detachment of the two heads, a "gating" mechanism, which is believed to arise from the strain within the molecule when both heads are bound to actin (12-15). Sufficiently large opposing loads can counteract the plus end-directed ...
The bacterial chaperonin GroEL and the co-chaperonin GroES assist in the folding of a number of structurally unrelated substrate proteins (SPs). In the absence of chaperonins, SP folds by the kinetic partitioning mechanism (KPM), according to which a fraction of unfolded molecules reaches the native state directly, while the remaining fraction gets trapped in a potentially aggregation-prone misfolded state. During the catalytic reaction cycle, GroEL undergoes a series of allosteric transitions (T<-->R-->R"-->T) triggered by SP capture, ATP binding and hydrolysis, and GroES binding. We developed a general kinetic model that takes into account the coupling between the rates of the allosteric transitions and the folding and aggregation of the SP. Our model, in which the GroEL allosteric rates and SP-dependent folding and aggregation rates are independently varied without prior assumption, quantitatively fits the GroEL concentration-dependent data on the yield of native ribulose bisphosphate carboxylase/oxygenase (Rubisco) as a function of time. The extracted kinetic parameters for the GroEL reaction cycle are consistent with the available values from independent experiments. In addition, we also obtained physically reasonable parameters for the kinetic steps in the reaction cycle that are difficult to measure. If experimental values for GroEL allosteric rates are used, the time-dependent changes in native-state yield at eight GroEL concentrations can be quantitatively fit using only three SP-dependent parameters. The model predicts that the differences in the efficiencies (as measured by yields of the native state) of GroEL, single-ring mutant (SR1), and variants of SR1, in the rescue of mitochondrial malate dehydrogenase, citrate synthase, and Rubisco, are related to the large variations in the allosteric transition rates. We also show that GroEL/S mutants that efficiently fold one SP at the expense of all others are due to a decrease in the rate of a key step in the reaction cycle, which implies that wild-type GroEL has evolved as a compromise between generality and specificity. We predict that, under maximum loading conditions and saturating ATP concentration, the efficiency of GroEL (using parameters for Rubisco) depends predominantly on the rate of R-->R" transition, while the equilibrium constant of the T<-->R has a small effect only. Both under sub- and superstoichiometric GroEL concentrations, enhanced efficiency is achieved by rapid turnover of the reaction cycle, which is in accord with the predictions of the iterative annealing mechanism. The effects are most dramatic at substoichiometric conditions (most relevant for in vivo situations) when SP aggregation can outcompete capture of SP by chaperonins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.