Functional connectivity between cortical areas may appear as correlated time behavior of neural activity. It has been suggested that merging of separate features into a single percept (''binding'') is associated with coherent gamma band activity across the cortical areas involved. Therefore, it would be of utmost interest to image cortico-cortical coherence in the working human brain. The frequency specificity and transient nature of these interactions requires time-sensitive tools such as magneto-or electroencephalography (MEG͞EEG). Coherence between signals of sensors covering different scalp areas is commonly taken as a measure of functional coupling. However, this approach provides vague information on the actual cortical areas involved, owing to the complex relation between the active brain areas and the sensor recordings. We propose a solution to the crucial issue of proceeding beyond the MEG sensor level to estimate coherences between cortical areas. Dynamic imaging of coherent sources (DICS) uses a spatial filter to localize coherent brain regions and provides the time courses of their activity. Reference points for the computation of neural coupling may be based on brain areas of maximum power or other physiologically meaningful information, or they may be estimated starting from sensor coherences. The performance of DICS is evaluated with simulated data and illustrated with recordings of spontaneous activity in a healthy subject and a parkinsonian patient. Methods for estimating functional connectivities between brain areas will facilitate characterization of cortical networks involved in sensory, motor, or cognitive tasks and will allow investigation of pathological connectivities in neurological disorders.oscillations ͉ functional connectivity ͉ coherence ͉ magnetoencephalography ͉ synchronization T he hypothesis that relevant information in the brain is coded by accurate timing of neuronal discharges has received strong support from recent reports of synchronization of neuronal firing within and across areas of the cat visual cortex (1). The synchronization of neural activity, which was modulated by gammaband oscillations, was shown to depend on stimulus properties like continuity, vicinity, and common motion, and on receptive field constellations (for review, see ref.2). This and similar findings seem to support the concept that synchronized rhythmic neural firing has a role in solving the binding problem, i.e., the integration of distributed information into a unified representation (1-4).To investigate cortico-cortical synchrony noninvasively in the human brain, new analysis tools must be developed. In functional magnetic resonance imaging (fMRI) studies, structural equation models have been used to estimate connectivities between brain areas (5, 6). Although this is a very promising approach, it lacks the temporal resolution required to measure oscillatory activity and to observe the expected transient formation of neuronal assemblies (7).Magnetoencephalography (MEG) and electroencephalography (...
The inferior occipitotemporal brain areas, especially in the left hemisphere, have been shown to be involved in the processing of written words and letter strings. This processing probably occurs within 200 ms after presentation of the letter string. It has also been suggested that this activation may differ between fluent and dyslexic readers. Using whole-head magnetoencephalography, we studied the spatiotemporal dynamics of brain processes evoked by visually presented letter strings in 12 healthy adult subjects. Our achromatic stimuli consisted of rectangular patches in which single letters, two-letter syllables, four-letter words, or symbol strings of equal length were embedded and to which variable noise was added. This manipulation dissociated three different response patterns. The first of these patterns took place approximately 100 ms after stimulus onset, originated in areas surrounding the V1 cortex and was distributed along the ventral visual stream, extending laterally as far as V4v. This response was systematically modulated by noise but was insensitive to the stimulus content, suggesting involvement in early visual analysis. The second pattern took place approximately 150 ms after stimulus onset and was concentrated in the inferior occipitotemporal region with left-hemisphere dominance. This activation showed a preference for letter strings, and its strength and timing correlated with the speed at which the subjects were able to read words aloud. The third pattern also occurred in the time window approximately 150 ms after stimulus onset, but originated mainly in the right occipital area. Like the second pattern, it was modulated by string length, but showed no preference for letters compared with symbols. The present data strongly support the special role of the left inferior occipitotemporal cortex in visual word processing within 200 ms after stimulus onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.