Alport syndrome (AS) is a progressive hereditary renal disease that is characterized by sensorineural hearing loss and ocular abnormalities. It is divided into three modes of inheritance, namely, X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, while ADAS and ARAS are caused by those in COL4A3/COL4A4. Diagnosis is conventionally made pathologically, but recent advances in comprehensive genetic analysis have enabled genetic testing to be performed for the diagnosis of AS as first-line diagnosis. Because of these advances, substantial information about the genetics of AS has been obtained and the genetic background of this disease has been revealed, including genotype-phenotype correlations and mechanisms of onset in some male XLAS cases that lead to milder phenotypes of late-onset end-stage renal disease (ESRD). There is currently no radical therapy for AS and treatment is only performed to delay progression to ESRD using nephron-protective drugs. Angiotensin-converting enzyme inhibitors can remarkably delay the development of ESRD. Recently, some new drugs for this disease have entered clinical trials or been developed in laboratories. In this article, we review the diagnostic strategy, genotype-phenotype correlation, mechanisms of onset of milder phenotypes, and treatment of AS, among others.
In Japanese patients with pediatric-onset MODY-type diabetes, mutations in known genes were identified at a much higher frequency than previously reported for adult Asians. A fraction of mutation-negative patients presented with insulin-resistance and normal insulin-secretory capacities resembling early-onset type 2 diabetes.
Atypical hemolytic uremic syndrome (aHUS) is rare and comprises the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Recently, abnormalities in the mechanisms underlying complement regulation have been focused upon as causes of aHUS. The prognosis for patients who present with aHUS is very poor, with the first aHUS attack being associated with a mortality rate of approximately 25%, and with approximately 50% of cases resulting in end-stage renal disease requiring dialysis. If treatment is delayed, there is a high risk of this syndrome progressing to renal failure. Therefore, we have developed diagnostic criteria for aHUS to enable its early diagnosis and to facilitate the timely initiation of appropriate treatment. We hope these diagnostic criteria will be disseminated to as many clinicians as possible and that they will be used widely.
We report unpredictable atypical splicing in the gene in male patients with XLAS and reveal that renal prognosis differs significantly for patients with truncating versus nontruncating splicing abnormalities. Our results suggest that splicing modulation should be explored as a therapy for XLAS with truncating mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.