BackgroundAlthough a variety of animals have been used to produce polyclonal antibodies against antigens, the production of antigen-specific monoclonal antibodies from animals remains challenging.ResultsWe propose a simple and rapid strategy to produce monoclonal antibodies from a variety of animals. By staining lymph node cells with an antibody against immunoglobulin and a fluorescent dye specific for the endoplasmic reticulum, plasma/plasmablast cells were identified without using a series of antibodies against lineage markers. By using a fluorescently labeled antigen as a tag for a complementary cell surface immunoglobulin, antigen-specific plasma/plasmablast cells were sorted from the rest of the cell population by fluorescence-activated cell sorting. Amplification of cognate pairs of immunoglobulin heavy and light chain genes followed by DNA transfection into 293FT cells resulted in the highly efficient production of antigen-specific monoclonal antibodies from a variety of immunized animals.ConclusionsOur technology eliminates the need for both cell propagation and screening processes, offering a significant advantage over hybridoma and display strategies.
BackgroundAdult T-cell leukemia/lymphoma (ATLL) develops in a small proportion of human T-cell leukemia virus type I (HTLV-I)-infected individuals. However, the mechanism by which HTLV-I causes ATLL has not been fully elucidated. To provide fundamental insights into the multistep process of leukemogenesis, we have mapped the chromosomal abnormalities in 50 ATLL cases to identify potential key regulators of ATLL.ResultsThe analysis of breakpoints in one ATLL case with the translocations t(14;17)(q32;q22-23) resulted in the identification of a Kruppel zinc finger gene, BCL11B, which plays a crucial role in T-cell development. Among the 7 ATLL cases that we examined by immunofluorescence analysis, 4 displayed low and one displayed moderate BCL11B signal intensities. A dramatically reduced level of the BCL11B protein was also found in HTLV-I-positive T-cell lines. The ectopic expression of BCL11B resulted in significant growth suppression in ATLL-derived cell lines but not in Jurkat cells.ConclusionsOur genetic and functional data provide the first evidence that a reduction in the level of the BCL11B protein is a key event in the multistep progression of ATLL leukemogenesis.
The original protocol of Red/ET recombination requires 50-bp sequence homology with target vector on both sides of the DNA fragment. To make it more cost effective, we investigated to determine the minimal length of homology required for the system to work. We found that a homology of 9-bp was sufficient to achieve homologous recombination with more than 50% efficiency.
Secondary solid tumors that occur after hematopoietic stem cell transplantation (HSCT) are late complications of HSCT. Previously, secondary solid tumors were considered to be recipient-derived cells because transplanted cells do not contain epithelial cells. Recently, however, not only donor‑derived epithelial cells but also donor-derived secondary solid tumors have also been reported in mice and humans. It means that circulating bone marrow-derived stem cells (BMDCs) including hematopoietic stem cells include the stem cells of many tissue types and the precancerous cells of many solid tumors. In most reports of donor-derived secondary solid tumors, however, tumors contained a low proportion of BMDC-derived epithelial cells in mixed solid tumor tissues. To our knowledge, there are only five known cases of completely donor-derived tumor tissues, i.e., four oral SCCs and a pharyngeal SCC. In this study, we analyzed five human clinical samples of solid tumors, i.e., two esophageal squamous cell carcinomas (SCCs), two oral SCCs and a tongue carcinoma. In the oral and tongue, completely donor-derived tissues were not observed, but in esophagus a completely donor-derived esophageal epidermis and SCC were observed for the first time. In addition, in another esophageal SCC patient, a completely donor-derived dysplasia region of esophageal epidermis was observed near recipient-derived SCC. This study suggests that BMDC-derived cells include the stem cells of esophageal epidermis and the precancerous cells of esophageal SCC and can differentiate into esophageal epithelium and esophageal SCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.