Abstract.A fully discrete approximation of the semilinear stochastic wave equation driven by multiplicative noise is presented. A standard linear finite element approximation is used in space, and a stochastic trigonometric method is used for the temporal approximation. This explicit time integrator allows for mean-square error bounds independent of the space discretization and thus does not suffer from a step size restriction as in the often used Störmer-Verlet leapfrog scheme. Furthermore, it satisfies an almost trace formula (i.e., a linear drift of the expected value of the energy of the problem). Numerical experiments are presented and confirm the theoretical results.
A fully discrete approximation of the one-dimensional stochastic heat equation driven by multiplicative space-time white noise is presented. The standard finite difference approximation is used in space and a stochastic exponential method is used for the temporal approximation. Observe that the proposed exponential scheme does not suffer from any kind of CFL-type step size restriction. When the drift term and the diffusion coefficient are assumed to be globally Lipschitz, this explicit time integrator allows for error bounds in L q (Ω), for all q ≥ 2, improving some existing results in the literature. On top of this, we also prove almost sure convergence of the numerical scheme. In the case of non-globally Lipschitz coefficients, we provide sufficient conditions under which the numerical solution converges in probability to the exact solution. Numerical experiments are presented to illustrate the theoretical results.Mathematics Subject Classification (2010): 60H15; 60H35.
Error analysis for globally Lipschitz continuous coefficientsThis section is divided into three subsections. We begin by stating the assumptions we will make and by recalling the mild solution of (1). The first subsection is dedicated to
We study an explicit exponential scheme for the time discretisation of stochastic Schrödinger equations driven by additive or multiplicative Ito noise. The numerical scheme is shown to converge with strong order 1 if the noise is additive and with strong order 1/2 for multiplicative noise. In addition, if the noise is additive, we show that the exact solutions of our problems satisfy trace formulas for the expected mass, energy, and momentum (i. e., linear drifts in these quantities). Furthermore, we inspect the behaviour of the numerical solutions with respect to these trace formulas. Several numerical simulations are presented and confirm our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.