Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect—the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included
The transcription of structural genes encoding two hydrogenases in N 2 -fixing cultures of the cyanobacteria Nostoc muscorum and Nostoc sp. strain PCC 73102 were examined by reverse transcription-PCR. A low level of oxygen and addition of nickel induce higher transcript levels of both hydrogenases, whereas molecular hydrogen has a positive effect on the transcription of the genes encoding only the uptake hydrogenase.
Filamentous, heterocystous cyanobacteria may contain both an uptake hydrogenase (encoded by hupSL) and a bidirectional enzyme (encoded by hoxFUYH). The present study identifies three strains (Anabaena variabilis, Nostoc muscorum and Nostoc sp. strain PCC 73102) with a contiguous hupL in both vegetative cells and heterocysts. The two Nostoc strains differ in either containing a bidirectional enzyme (N. muscorum) or lacking this enzyme (N. PCC 73102). Transcriptional studies, using reverse transcriptase-polymerase chain reaction, demonstrated an induction of a hupL transcript approximately 24 h after a shift from non-nitrogen-fixing to nitrogen-fixing conditions (in parallel with the induction of an in vivo light-dependent H P -uptake activity) in N. muscorum. However, the level of hoxH transcripts did not change significantly during the induction of the H Puptake activity. z
Maturation of [NiFe]-hydrogenases requires the action of several groups of accessory genes. Homologues of one group of these genes, the so-called hyp genes, putatively encoding proteins participating in the formation of an active uptake hydrogenase in the filamentous, heterocyst-forming cyanobacterium Nostoc PCC 73102, were cloned. The cluster, consisting of hypF, hypC, hypD, hypE, hypA, and hypB, is located 3.8 kb upstream from the uptake hydrogenase-encoding hupSL. Gene expression analyses show that these hyp genes are, like hupL, transcribed under N(2)-fixing but not under non-N(2)-fixing growth conditions. Furthermore, the six hyp genes are transcribed together with an open reading frame upstream of hypF, as a single mRNA. Analysis of the DNA region upstream of the experimentally determined transcriptional start site revealed putative -10 and -35 sequence elements and putative binding sites for the global nitrogen regulator NtcA.
Filamentous, heterocystous cyanobacteria may contain both an uptake hydrogenase (encoded by hupSL) and a bidirectional enzyme (encoded by hoxFUYH). The present study identifies three strains (Anabaena variabilis, Nostoc muscorum and Nostoc sp. strain PCC 73102) with a contiguous hupL in both vegetative cells and heterocysts. The two Nostoc strains differ in either containing a bidirectional enzyme (N. muscorum) or lacking this enzyme (N. PCC 73102). Transcriptional studies, using reverse transcriptase-polymerase chain reaction, demonstrated an induction of a hupL transcript approximately 24 h after a shift from non-nitrogen-fixing to nitrogen-fixing conditions (in parallel with the induction of an in vivo light-dependent H2-uptake activity) in N. muscorum. However, the level of hoxH transcripts did not change significantly during the induction of the H2-uptake activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.