By-products from the food sector with a high load of organic matter present both a waste-handling problem related to expenses and to the environment, yet also an opportunity. This study aims to increase the value of stale bread and brewers spent grain (BSG) by re-introducing these residues to the food production chain by converting them to new protein-enriched products using the edible filamentous fungi Neurospora intermedia and Rhizopusoryzae . After 6 days of solid state fermentation (at 35°C, with a95% relative humidity and moisture content of 40% in the substrate) on stale bread, a nutrient-rich fungal-fermented product was produced. The total protein content, as analyzed by total amino acids, increased from 16.5% in stale sourdough bread to 21.1% (on dry weight basis) in the final product with an improved relative ratio of essential amino acids. An increase in dietary fiber, minerals (Cu, Fe, Zn) and vitamin E, as well as an addition of vitamin D2 (0.89 µg/g dry weight sample) was obtained compared with untreated stale bread. Furthermore, addition of BSG to the sourdough bread with the aim to improve textural changes after fermentation showed promising outcomes. Cultivation of N. intermedia or R. oryzae on stale sourdough bread mixed with 6.5% or 11.8% BSG, respectively, resulted in fungal-fermented products with similar textural properties to a commercial soybean burger. Bioconversion of stale bread and BSG by fungal solid state fermentation to produce a nutrient-enriched food product was confirmed to be a successful way to minimize food waste and protein shortage.
Background A whole-grain (WG)–rich diet has shown to have potential for both prevention and treatment of the metabolic syndrome (MetS), which is a cluster of risk factors that increase the risk of type 2 diabetes and cardiovascular disease. Different WGs may have different health effects. WG rye, in particular, may improve glucose homeostasis and blood lipids, possibly mediated through fermentable dietary fiber and lignans. Recent studies have also suggested a crucial role of the gut microbiota in response to WG. Objectives The aim was to investigate WG rye, alone and with lignan supplements [secoisolariciresinol diglucoside (SDG)], and WG wheat diets on glucose tolerance [oral-glucose-tolerance test (OGTT)], other cardiometabolic outcomes, enterolignans, and microbiota composition. Moreover, we exploratively evaluated the role of gut microbiota enterotypes in response to intervention diets. Methods Forty men with MetS risk profile were randomly assigned to WG diets in an 8-wk crossover study. The rye diet was supplemented with 280 mg SDG at weeks 4–8. Effects of treatment were evaluated by mixed-effects modeling, and effects on microbiota composition and the role of gut microbiota as a predictor of response to treatment were analyzed by random forest plots. Results The WG rye diet (± SDG supplements) did not affect the OGTT compared with WG wheat. Total and LDL cholesterol were lowered (−0.06 and −0.09 mmol/L, respectively; P < 0.05) after WG rye compared with WG wheat after 4 wk but not after 8 wk. WG rye resulted in higher abundance of Bifidobacterium [fold-change (FC) = 2.58, P < 0.001] compared with baseline and lower abundance of Clostridium genus compared with WG wheat (FC = 0.54, P = 0.02). The explorative analyses suggest that baseline enterotype is associated with total and LDL-cholesterol response to diet. Conclusions WG rye, alone or with SDG supplementation, compared with WG wheat did not affect glucose metabolism but caused transient LDL-cholesterol reduction. The effect of WG diets appeared to differ according to enterotype. This trial was registered at www.clinicaltrials.gov as NCT02987595.
Consumption of whole grain and cereal fiber have been inversely associated with body weight and obesity measures in observational studies but data from large, long-term randomized interventions are scarce. Among the cereals, rye has the highest fiber content and high rye consumption has been linked to increased production of gut fermentation products, as well as reduced risks of obesity and metabolic disease. The effects on body weight and metabolic risk factors may partly be mediated through gut microbiota and/or their fermentation products. We used data from a randomized controlled weight loss trial where participants were randomized to a hypocaloric diet rich in either high fiber rye foods or refined wheat foods for 12 weeks to investigate the effects of the intervention on gut microbiota composition and plasma short chain fatty acids, as well as the potential association with weight loss and metabolic risk markers. Rye, compared to wheat, induced some changes in gut microbiota composition, including increased abundance of the butyrate producing Agathobacter and reduced abundance of [Ruminococcus] torques group, which may be related to reductions in low grade inflammation caused by the intervention. Plasma butyrate increased in the rye group. In conclusion, intervention with high fiber rye foods induced some changes in gut microbiota composition and plasma short chain fatty acid concentration, which were associated with improvements in metabolic risk markers as a result of the intervention.
Introduction Consensus in sample preparation for untargeted human fecal metabolomics is lacking. Objectives To obtain sample preparation with broad metabolite coverage for high-throughput LC–MS. Methods Extraction solvent, solvent ratio and fresh frozen-vs-lyophilized samples were evaluated by metabolite feature quality. Results Methanol at 5 mL per g wet feces provided a wide metabolite coverage with optimal balance between signal intensity and saturation for both fresh frozen and lyophilized samples. Lyophilization did not affect SCFA and is recommended because of convenience in normalizing to dry matter. Conclusion The suggested sample preparation is simple, efficient and suitable for large-scale human fecal metabolomics.
The aims of this study were to investigate the role of hemoglobin (Hb) in lipid oxidation development during ensilaging of herring filleting co-products, and, to inhibit this reaction by pre-incubating the co-products in water or physiological salt, with/without different antioxidants. Results showed that both peroxide value (PV) and 2-thiobarbituric acid reactive substances (TBARS) gradually increased during 7 days of ensilaging at 22 °C in absence of antioxidants. The increase in TBARS was proportional to the Hb levels present, while PV was less affected. A Hb-fortified Tris-buffer model system adjusted to pH 3.50 confirmed that Hb changed immediately from its native oxyHb to the metHb state, which facilitated heme group release and thus probably explains the increased PV and TBARS during ensilaging. Pre-incubating the co-products for 30 s in a solution containing 0.5% rosemary extract was the most promising strategy to inhibit lipid oxidation both in the co-products during pre-processing storage and during the actual ensilaging. The solution could be re-used up to ten times without losing its activity, illustrating that this methodology can be a scalable and cost-effective strategy to extend the oxidative stability of herring co-products allowing for further value adding e.g., into a high-quality silage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.