Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.
Gout is characterized by an acute inflammatory reaction and the accumulation of neutrophils in response to monosodium urate (MSU) crystals. Inflammation resolves spontaneously within a few days, although MSU crystals can still be detected in the synovial fluid and affected tissues. Here we report that neutrophils recruited to sites of inflammation undergo oxidative burst and form neutrophil extracellular traps (NETs). Under high neutrophil densities, these NETs aggregate and degrade cytokines and chemokines via serine proteases. Tophi, the pathognomonic structures of chronic gout, share characteristics with aggregated NETs, and MSU crystals can induce NETosis and aggregation of NETs. In individuals with impaired NETosis, MSU crystals induce uncontrolled production of inflammatory mediators from neutrophils and persistent inflammation. Furthermore, in models of neutrophilic inflammation, NETosis-deficient mice develop exacerbated and chronic disease that can be reduced by adoptive transfer of aggregated NETs. These findings suggest that aggregated NETs promote the resolution of neutrophilic inflammation by degrading cytokines and chemokines and disrupting neutrophil recruitment and activation.
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
The Ncf1 gene was recently identified as a strong regulator of severe arthritis in rat. This finding was surprising, because the disease-promoting allele mediated a lower level of reactive oxygen species in NADPH oxidase-expressing cells. We have now investigated a splice mutation of the Ncf1 gene in B10.Q mice, causing a truncated and nonfunctional Ncf1 protein. We found that the mutated Ncf1 led to a more severe and chronic relapsing collageninduced arthritis. Enhanced IgG and delayed-type hypersensitivity responses against type II collagen were seen, indicating increased activity of autoreactive T cells. Interestingly, female Ncf1-mutated mice spontaneously developed severe arthritis during the postpartum period. The arthritis was accompanied by an increased antibody response to type II collagen, with the same fine specificity as in collagen-induced arthritis. The enhancing effect of the mutated Ncf1 could also be shown to be more general in that it enhanced myelin oligodendrocyte glycoprotein protein-induced experimental autoimmune encephalomyelitis, a model for multiple sclerosis. These results show that Ncf1, a gene important for oxidative burst, regulates the susceptibility and severity of both arthritis and encephalomyelitis and modulates, directly or indirectly, the level of T cell-dependent autoimmune responses. rodent ͉ T lymphocytes ͉ NADPH
The identification of genes underlying quantitative-trait loci (QTL) for complex diseases, such as rheumatoid arthritis, is a challenging and difficult task for the human genome project. Through positional cloning of the Pia4 QTL in rats, we found that a naturally occurring polymorphism of Ncf1 (encoding neutrophil cytosolic factor 1, a component of the NADPH oxidase complex) regulates arthritis severity. The disease-related allele of Ncf1 has reduced oxidative burst response and promotes activation of arthritogenic T cells. Pharmacological treatment with substances that activate the NADPH oxidase complex is shown to ameliorate arthritis. Hence, Ncf1 is associated with a new autoimmune mechanism leading to severe destructive arthritis, notably similar to rheumatoid arthritis in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.