We have developed a novel Schwann cell line, SCTM41, derived from postnatal sciatic nerve cultures and have stably transfected a clone with a rat glial cell line-derived neurotrophic factor (GDNF) construct. Coculture with this GDNF-secreting clone enhances in vitro survival and fiber growth of embryonic dopaminergic neurons. In the rat unilateral 6-OHDA lesion model of Parkinson's disease, we have therefore made cografts of these cells with embryonic day 14 ventral mesencephalic grafts and assayed for effects on dopaminergic cell survival and process outgrowth. We show that cografts of GDNF-secreting Schwann cell lines improve the survival of intrastriatal embryonic dopaminergic neuronal grafts and improve neurite outgrowth into the host neuropil but have no additional effect on amphetamine-induced rotation. We next looked to see whether bridge grafts of GDNF-secreting SCTM41 cells would promote the growth of axons to their striatal targets from dopaminergic neurons implanted orthotopically into the 6-OHDA-lesioned substantia nigra. We show that such bridge grafts increase the survival of implanted embryonic dopaminergic neurons and promote the growth of axons through the grafts to the striatum.
Although most peripheral tissues have at least a limited ability for self-repair, the central nervous system (CNS) has long been known to be relatively resistant to regeneration. Small numbers of stem cells have been found in the adult brain but do not appear to be able to affect any significant recovery following disease or insult. In the last few decades, the idea of being able to repair the brain by introducing new cells to repair damaged areas has become an accepted potential treatment for neurodegenerative diseases. This review focuses on the suitability of various human stem cell sources for such treatments of both slowly progressing conditions, such as Parkinson's disease, Huntington's disease and multiple sclerosis, and acute insult, such as stroke and spinal cord injury. Despite stem cell transplantation having now moved a step closer to the clinic with the first trials of autologous mesenchymal stem cells, the effects shown are moderate and are not yet at the stage of development that can fulfil the hopes that have been placed on stem cells as a means to replace degenerating cells in the CNS. Success will depend on careful investigation in experimental models to enable us to understand not just the practicalities of stem cell use, but also the underlying biological principles.
There are real prospects of stem cell technology having a place in clinical management of neurodegenerative conditions, but directing the differentiation of stem cells towards the appropriate neural phenotype remains a challenge. This is a relatively new and rapidly evolving area, and caution should be applied when advising patients.
When embryonic dopaminergic neurons are transplanted into the adult brain, approximately 95% die within a few days. To assess whether microglia activated during transplantation might be responsible for this rapid death, we examined the effect of microglia on rat embryonic dopaminergic neurons in vitro. Conditioned medium from 7-day-old microglia was found to decrease the number of dopamine neurons surviving in primary culture, but activation of the microglia with N-formyl-methionyl-leucyl-phenylalanine (FMLP) or Zymosan A did not increase the toxicity of the conditioned medium. We next tested the effect of coculturing microglia and dopaminergic neurons by placing microglia in semipermeable well inserts over the neuronal cultures. The presence of microglia now increased dopaminergic neuronal survival, microglial activation again having no effect. To increase yet further the possible interactions between microglia and neurons, the mesencephalic cells and microglia were mixed together and placed as a tissue in three-dimensional culture, and here again the presence of microglia increased dopaminergic neuronal survival with no effect of activation. Contact of microglia with the mesencephalic cells therefore converted them from being toxic to dopaminergic neurons to promoting their survival. The change in microglial effect from toxic to protective was caused by soluble molecules secreted by cells in the neuronal cultures, as conditioned medium derived from microglia-neuronal cocultures also had a dopaminergic neuron survival effect, indicating that microglia in cocultures behave differently from microglia removed from neuronal and glial influence. Microglia cocultured with either neurons or astrocytes downregulated inducible nitric oxide synthase (iNOS), indicating a decrease in the production of nitric oxide and possibly other toxic molecules. These findings indicate that in their natural environment, microglia are likely to be beneficial for the survival of embryonic dopaminergic grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.