The purpose of this work was to show in a conclusive way the c!b phase transformation induced by uniaxial stretching in poly(vinylidene fluoride). Poly(vinylidene fluoride) films were melted and crystallized at 163 C for 36 h. Under these conditions, a mixture of a and c phases was formed, with a predominance of the latter. These films were uniaxially stretched at 130 C at a draw ratio of 4. Fourier transform infrared and differential scanning calorimetry analyses showed a c!b phase transition in the solid state, whereas orientation of the a phase without any transition was observed. Optical microscopy analysis permitted the observation of the transformation of spherulitic structures into oriented lamellae during stretching.
To turn the advantage of energy measurement in x-ray transmission diagnosis into practice, we propose a novel detector for the estimation of x-ray energy distribution. This detector consists of several segment detectors arrayed in the direction of x-ray incidence. Each segment detector measures x-rays as current. With unfolding measured currents, the x-ray energy distribution is obtained. The practical application of this detector was verified by estimating the iodine thickness in an acryl phantom.
To turn the advantage of energy measurement in x-ray transmission diagnosis into practice, we propose a novel detector for the estimation of x-ray energy distribution. This detector consists of several segment detectors arrayed in the direction of x-ray incidence. Each segment detector measures x-rays as current. With unfolding measured currents, the x-ray energy distribution is obtained. The practical application of this detector was verified by estimating the iodine thickness in an acryl phantom.
The computed tomography (CT) values obtained by the energy subtraction method with a transXend detector, which measured X-rays as current and gave the corresponding X-ray energy information, show the disadvantage that the CT values are dependent on the thickness of a homogeneous phantom. In order to obtain constant CT values for a uniform material, a new unfolding method is proposed using variable response functions of the transXend detector according to the X-ray path length in the phantom. The CT values measured using the new unfolding method are discussed with respect to the energy range used in the unfolding process, the number of segment detectors, and the substrate of the segment detectors.
In conventional X-ray computed tomography (CT), X-rays are measured as electric current. Materials inside a subject are described by the linear attenuation coefficients averaged by the energy spectrum of the X-rays. A CT image cannot distinguish materials such as iodine and calcium, because the linear attenuation coefficient is not inherent to a material, but the product of X-ray mass attenuation coefficient and the density of the material. Materials such as iodine and calcium can be distinguished using an energy-resolved CT technique, with a current-mode detector system, using segment detectors aligned in the direction of X-ray incidence: the energy-resolved CT images are reconstructed by the X-rays with the energy of interest, by unfolding electric currents measured by the segment detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.