At submicromolar concentrations, capsaicin specifically activates the TRPV1 receptor involved in nociception. At micro-to millimolar concentrations, commonly used in clinical and in vitro studies, capsaicin also modulates the function of a large number of seemingly unrelated membrane proteins, many of which are similarly modulated by the capsaicin antagonist capsazepine. The mechanism(s) underlying this widespread regulation of protein function are not understood. We investigated whether capsaicin could regulate membrane protein function by changing the elasticity of the host lipid bilayer. This was done by studying capsaicin's effects on lipid bilayer stiffness, measured using gramicidin A (gA) channels as molecular forcetransducers, and on voltage-dependent sodium channels (VDSC) known to be regulated by bilayer elasticity. Capsaicin and capsazepine (10 -100 M) increase gA channel appearance rate and lifetime without measurably altering bilayer thickness or channel conductance, meaning that the changes in bilayer elasticity are sufficient to alter the conformation of an embedded protein. Capsaicin and capsazepine promote VDSC inactivation, similar to other amphiphiles that decrease bilayer stiffness, producing use-dependent current inhibition. For capsaicin, the quantitative relation between the decrease in bilayer stiffness and the hyperpolarizing shift in inactivation conforms to that previously found for other amphiphiles. Capsaicin's effects on gA channels and VDSC are similar to those of Triton X-100, although these amphiphiles promote opposite lipid monolayer curvature. We conclude that capsaicin can regulate VDSC function by altering bilayer elasticity. This mechanism may underlie the promiscuous regulation of membrane protein function by capsaicin and capsazepine-and by amphiphilic drugs generally.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid–protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel–bilayer hydrophobic interactions link a “conformational” change (the monomer↔dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (β-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less “stiff”, as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer–protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.