Mitochondria play a principal role in metabolism, and mitochondrial respiration is an important process for producing adenosine triphosphate. Recently, we showed the possibility that the muscle‐specific protein myoglobin (Mb) interacts with mitochondrial complex IV to augment the respiration capacity in skeletal muscles. However, the precise mechanism for the Mb‐mediated upregulation remains under debate. The aim of this study was to ascertain whether Mb is truly integrated into the mitochondria of skeletal muscle and to investigate the submitochondrial localization. Isolated mitochondria from rat gastrocnemius muscle were subjected to different proteinase K (PK) concentrations to digest proteins interacting with the outer membrane. Western blotting analysis revealed that the PK digested translocase of outer mitochondrial membrane 20 (Tom20), and the immunoreactivity of Tom20 decreased with the amount of PK used. However, the immunoreactivity of Mb with PK treatment was better preserved, indicating that Mb is integrated into the mitochondria of skeletal muscle. The mitochondrial protease protection assay experiments suggested that Mb localizes within the mitochondria in the inner membrane from the intermembrane space side. These results strongly suggest that Mb inside muscle mitochondria could be implicated in the regulation of mitochondrial respiration via complex IV.
Background: Previous research has suggested that curcumin potentially induces mitochondrial biogenesis in skeletal muscle via increasing cAMP levels. However, the regulatory mechanisms for this phenomenon remain unknown. The purpose of the present study was to clarify the mechanism by which curcumin activates cAMP-related signalling pathways that upregulate mitochondrial biogenesis and respiration in skeletal muscle. Methods: The effect of curcumin treatment (i.p., 100 mg/kg-BW/day for 28 days) on mitochondrial biogenesis was determined in rats. The effects of curcumin and exercise (swimming for 2 h/day for 3 days) on the cAMP signalling pathway were determined in the absence and presence of phosphodiesterase (PDE) or protein kinase A (PKA) inhibitors. Mitochondrial respiration, citrate synthase (CS) activity, cAMP content, and protein expression of cAMP/PKA signalling molecules were analysed. Results: Curcumin administration increased COX-IV protein expression, and CS and complex I activity, consistent with the induction of mitochondrial biogenesis by curcumin. Mitochondrial respiration was not altered by curcumin treatment. Curcumin and PDE inhibition tended to increase cAMP levels with or without exercise. In addition, exercise increased the phosphorylation of PDE4A, whereas curcumin treatment strongly inhibited PDE4A phosphorylation regardless of exercise. Furthermore, curcumin promoted AMPK phosphorylation and PGC-1α deacetylation. Inhibition of PKA abolished the phosphorylation of AMPK. Conclusion: The present results suggest that curcumin increases cAMP levels via inhibition of PDE4A phosphorylation, which induces mitochondrial biogenesis through a cAMP/PKA/AMPK signalling pathway. Our data also suggest the possibility that curcumin utilizes a regulatory mechanism for mitochondrial biogenesis that is distinct from the exercise-induced mechanism in skeletal muscle.
Recently, we found that myoglobin (Mb) localizes in both the cytosol and mitochondrial intermembrane space in rodent skeletal muscle. Most proteins of the intermembrane space pass through the outer mitochondrial membrane via the translocase of the outer membrane (TOM) complex. However, whether the TOM complex imports Mb remains unknown. The purpose of this study was to investigate the involvement of the TOM complex in Mb import into the mitochondria. A proteinase K protection assay of mitochondria from C2C12 myotubes confirmed that Mb integrated into the mitochondria. An immunoprecipitation assay verified the interaction of Mb and TOM complex receptors (Tom20, Tom70) in isolated mitochondria. The assay showed a clear interaction of Mb with Tom20 and Tom70. A knockdown experiment using siRNA for TOM complex receptors (Tom20, Tom70) and TOM complex channel (Tom40) did not alter the amount of Mb expression in the mitochondrial fraction. These results suggested that Mb does not necessarily require the TOM complex for mitochondrial import of Mb. Although the physiological role of Mb interactions with TOM complex receptors remains unclear, further studies are needed to clarify how Mb enters the mitochondria independently of the TOM complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.