Glycoside hydrolase family 65 (GH65) comprises glycoside hydrolases (GHs) and glycoside phosphorylases (GPs) that act on α-glucosidic linkages in oligosaccharides. All previously reported bacterial GH65 enzymes are GPs, whereas all eukaryotic GH65 enzymes known are GHs. In addition, to date, no crystal structure of a GH65 GH has yet been reported. In this study, we use biochemical experiments and X-ray crystallography to examine the function and structure of a GH65 enzyme from
Flavobacterium johnsoniae
(FjGH65A) that shows low amino acid sequence homology to reported GH65 enzymes. We found that FjGH65A does not exhibit phosphorolytic activity, but it does hydrolyze kojibiose (α-1,2-glucobiose) and oligosaccharides containing a kojibiosyl moiety without requiring inorganic phosphate. In addition, stereochemical analysis demonstrated that FjGH65A catalyzes this hydrolytic reaction
via
an anomer-inverting mechanism. The three-dimensional structures of FjGH65A in native form and in complex with glucose were determined at resolutions of 1.54 and 1.40 Å resolutions, respectively. The overall structure of FjGH65A resembled those of other GH65 GPs, and the general acid catalyst Glu
472
was conserved. However, the amino acid sequence forming the phosphate-binding site typical of GH65 GPs was not conserved in FjGH65A. Moreover, FjGH65A had the general base catalyst Glu
616
instead, which is required to activate a nucleophilic water molecule. These results indicate that FjGH65A is an α-1,2-glucosidase and is the first bacterial GH found in the GH65 family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.