We present two results on multiqubit Werner states, defined to be those states that are invariant under the collective action of any given single-qubit unitary that acts simultaneously on all the qubits. Motivated by the desire to characterize entanglement properties of Werner states, we construct a basis for the real linear vector space of Werner invariant Hermitian operators on the Hilbert space of pure states; it follows that any mixed Werner state can be written as a mixture of these basis operators with unique coefficients. Continuing a study of “polygon diagram” Werner states constructed in earlier work, with a goal to connect diagrams to entanglement properties, we consider a family of multiqubit states that generalize the singlet, and show that their 2-qubit reduced density matrices are separable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.