Sandwich panels are widely used in the design of unmanned satellites and, in addition to having a structural function, can often serve as shielding, protecting the satellites’ equipment from hypervelocity impacts (HVI) of orbital debris and micrometeoroids. This paper provides a comprehensive review of experimental studies in the field of HVI on sandwich panels with honeycomb- and open-cell foam cores, as well as an examination of available predictive models for the assessment of the panels’ ballistic limits. The emphasis of the review is placed on: (i) identifying gaps in the existing experimental database and the appropriate directions for its further expansion; and (ii) understanding the limitations of the available predictive models and the potential for their improvement.
Cell size, foil thickness, and the material of the core, influence the ballistic performance of honeycombcore sandwich panels (HCSP) in the case of hypervelocity impact (HVI) by orbital debris. Two predictive models that account for this influence have been developed in this study: a dedicated ballistic limit equation (BLE) and an artificial neural network (ANN) trained to predict the outcomes of HVI on HCSP. The BLE is a modified version of the Whipple shield BLE and demonstrated excellent accuracy in predicting the ballistic limits of HCSP, when tested against a new set of simulation data, with the discrepancy ranging from 1.13% to 5.58% only. The ANN was developed using MATLAB's Deep Learning Toolbox framework and was trained utilizing the same HCSP HVI database as that employed for the BLE fitting and demonstrated a very good predictive accuracy, when tested against a set of simulation data not previously used in the training of the network, with the discrepancy ranging from 0.67% to 7.27%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.