The knowledge surrounding the bovine vaginal microbiota and its implications on fertility and reproductive traits remains incomplete. The objective of the current study was to characterize the bovine vaginal bacterial community and estradiol concentrations at the time of artificial insemination (AI). Brangus heifers (n = 78) underwent a 7-d Co-Synch + controlled internal drug release estrus synchronization protocol. At AI, a double-guarded uterine culture swab was used to sample the anterior vaginal tract. Immediately after swabbing the vaginal tract, blood samples were collected by coccygeal venipuncture to determine concentrations of estradiol. Heifers were retrospectively classified as pregnant (n = 29) vs. nonpregnant (n = 49) between 41 and 57 d post-AI. Additionally, heifers were classified into low (1.1 to 2.5 pg/mL; n = 21), medium (2.6 to 6.7 pg/mL; n = 30), and high (7.2 to 17.6 pg/mL; n = 27) concentration of estradiol. The vaginal bacterial community composition was determined through sequencing of the V4 region from the 16S rRNA gene using the Illumina Miseq platform. Alpha diversity was compared via ANOVA and beta diversity was compared via PERMANOVA. There were no differences in the Shannon diversity index (alpha diversity; P = 0.336) or Bray–Curtis dissimilarity (beta diversity; P = 0.744) of pregnant vs. nonpregnant heifers. Overall, bacterial community composition in heifers with high, medium, or low concentrations of estradiol did not differ (P = 0.512). While no overall compositional differences were observed, species-level differences were present within pregnancy status and estradiol concentration groups. The implications of these species-level differences are unknown, but these differences could alter the vaginal environment thereby influencing fertility and vaginal health. Therefore, species-level changes could provide better insight rather than overall microbial composition in relation to an animal’s reproductive health.
The objectives were to examine melatonin mediated changes in temporal uterine blood flow (UBF), vaginal temperatures (VT), and fetal morphometrics in 54 commercial Brangus heifers (Fall, n = 29; Summer, n = 25) during compromised pregnancy. At d160 of gestation, heifers were assigned to 1 of 4 treatments consisting of adequately fed (ADQ-CON; 100% NRC; n = 13), global nutrient restricted (RES-CON; 60% NRC; n =13), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL, n = 13; RES-MEL, n = 15). In the morning (0500 h; AM) and afternoon (1300 h; PM) of d220 of gestation, UBF was determined via Doppler ultrasonography while temperature data loggers attached to progesterone-free CIDRs were used to record VT. At d240 of gestation, heifers underwent Cesarean sections for fetal removal and morphometrics determination. The UBF and VT data were analyzed using repeated measures of ANOVA; while the morphometrics were analyzed by the MIXED procedure of SAS. Seasons were analyzed separately. In Fall, a nutrition by treatment interaction was observed, where the RES-CON heifers exhibited reduced total UBF compared to ADQ-CON (5.67±0.68 vs. 7.97±0.54 L/min; P = 0.039). In Summer, MEL heifers exhibited increased total UBF compared to the CON counterparts (8.16±0.73 vs. 6.00±0.70 L/min; P = 0.048). Moreover, there was a nutrition by treatment by time interaction in VT for Fall and Summer heifers (P ≤ 0.005). In Fall, all groups had decreased VT in the morning compared to the afternoon (P < 0.05). Whereas, in Summer, VT increased for ADQ-CON and RES-CON (P < 0.0001) from morning to afternoon, while the ADQ-MEL and RES-MEL remained constant throughout the day (P = 0.648). Furthermore, the RES-MEL-PM exhibited decreased VT compared to ADQ-CON-PM (38.91±0.09 vs. 39.26±0.09°C; P = 0.018). Lastly, in Fall, a main effect of nutrition was observed on fetal weights, where the RES dams had fetuses with decreased body weight when compared to ADQ (24.08±0.62 vs. 26.57±0.64 kg; P = 0.0087). In Summer, a nutrition by treatment interaction was observed on fetal weights where the RES-CON dams had fetuses with reduced weight when compared to ADQ-CON and RES-MEL (P < 0.05). In summary, nutrient restriction decreased UBF and melatonin supplementation increased UBF depending on the season. Additionally, melatonin appeared to decrease VT and rescue fetal weights when supplemented in the Summer.
In recent years, there has been an influx of research evaluating the roles of the reproductive tract microbiota in modulating reproductive performance. These efforts have resulted in a breadth of research exploring the bovine reproductive tract microbiota. The female reproductive tract microbiota has been characterized during the estrus cycle, at timed artificial insemination, during gestation, and post-partum. Additionally, there are recently published studies investigating in-utero inoculation of the bovine fetus. However, critical review of the literature to understand how the microbial shifts during a dam’s lifecycle could impact neonatal outcomes is limited. This review demonstrates a consistency at the phyla level throughout both the maternal, paternal, and neonatal microbiomes. Moreover, this review challenges the current gestational inoculation hypothesis and suggests instead a maturation of the resident uterine microbiota throughout gestation to parturition. Recent literature is indicative of microbial composition influencing metabolomic parameters that have developmental programming effects in feed utilization and metabolic performance later in life. Thus, this review enumerates the potential origins of neonatal microbial inoculation from conception, through gestation, parturition, and colostrum consumption while introducing clear paucities where future research is needed to better understand the ramifications of the reproductive microbiome on neonates.
Altering the composition of the bovine vaginal microbiota has proved challenging, with recent studies deeming the microbiota dynamic due to few overall changes being found. Therefore, the objectives of this study were to determine if gestational age, endogenous progesterone, maternal nutrient restriction, or dietary melatonin altered the composition of the bovine vaginal microbiota. Brangus heifers (n = 29) from timed artificial insemination to day 240 of gestation were used; at day 160 of gestation, heifers were assigned to either an adequate (ADQ; n = 14; 100% NRC requirements) or restricted (RES; n = 15; 60% NRC requirements) nutritional plane and were either supplemented with dietary melatonin (MEL; n = 15) or not supplemented (CON; n = 14). Samples for vaginal microbiota analysis were taken on day 0 (prior to artificial insemination), day 150 (prior to dietary treatments), and day 220 of gestation (60 days post-treatment initiation) using a double guarded culture swab. The vaginal bacterial overall community structure was determined through sequencing the V4 region of the 16S rRNA gene using the Illumina Miseq platform. Alpha diversity was compared via two-way ANOVA; beta diversity was compared via PERMANOVA. The linear discriminant analysis for effect size (LEfSe) pipeline was utilized for analysis of taxonomic rank differences between bacterial communities. Gestational age, progesterone concentration, and maternal nutritional plane did not alter alpha or beta diversity of the vaginal microbiota. However, gestational age resulted in compositional changes at the order, family, and genus level. Moreover, dietary melatonin supplementation did not alter alpha diversity of the vaginal microbiota but did alter beta diversity (P = 0.02). Specifically, melatonin altered the composition at the genus level and increased the prevalence of aerobic bacteria in the vaginal tract. To date, melatonin is the first hormone associated with altering the composition of the bovine vaginal microbiota.
The knowledge surrounding the bovine vaginal microbiome and its implications on fertility and reproductive traits remains incomplete. The objective of the current study was to characterize the bovine vaginal microbiome and estradiol concentrations at time of artificial insemination (AI). Brangus heifers (n = 78) underwent a 7-d Co-Synch + CIDR estrus synchronization protocol. At AI, a double guarded uterine culture swab was used to sample the anterior vaginal tract. Blood samples were collected by coccygeal venipuncture to determine concentrations of estradiol. Heifers were retrospectively classified as pregnant (n = 29) versus nonpregnant (n = 49) on day 35. Lastly, heifers were classified into low (1.1 - 2.5 pg/ml; n = 21), medium (2.6 - 6.7 pg/ml; n = 30), and high (7.2 - 17.6 pg/ml; n = 27) concentrations of estradiol. The vaginal bacterial community composition was determined through sequencing of the V4-V5 region from the 16S rRNA gene using the Illumina Miseq platform. ANOVA was used to compare the diversity metrics between treatment groups. PERMANOVA was utilized to determine variation in community structure. There were no statistical differences in the Shannon diversity index (alpha diversity; P = 0.336) or principal component analysis (beta diversity; P = 0.744) of pregnant versus nonpregnant animals. The vaginal microbiome of pregnant and nonpregnant animals was similar with the four most abundant phyla being Tenericutes, Proteobacteria, Fusobacteria, and Firmicutes. Overall bacterial community composition in animals with high, medium, or low concentrations of estradiol did not differ (P = 0.512). These results indicate that concentration of estradiol does not impact vaginal microbiome composition. In conclusion, the composition of the bovine vaginal microbiome, although dynamic, may not be directly linked to an animal’s reproductive ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.