The gut microbiome is a key factor in determining inter-individual variability in response to diet. Thus, far, research in this area has focused on metabolic health outcomes such as obesity and type 2 diabetes. However, understanding the role of the gut microbiome in determining response to diet may also lead to improved personalization of sports nutrition for athletic performance. The gut microbiome has been shown to modify the effect of both diet and exercise, making it relevant to the athlete's pursuit of optimal performance. This area of research can benefit from recent developments in the general field of personalized nutrition and has the potential to expand our knowledge of the nexus between the gut microbiome, lifestyle, and individual physiology.
Inulin-type fructans (ITF), including short-chain fructooligosaccharides (scFOS), oligofructose, and inulin, are commonly used fibers that are widely regarded as prebiotic for their ability to be selectively utilized by the intestinal microbiota to confer a health benefit. However, the literature thus far lacks a thorough discussion of the evidence from human clinical trials for the prebiotic effect of ITF, including both effects on the intestinal microbiota composition as well as the intestinal and extraintestinal (e.g., glucose homeostasis, lipids, mineral absorption and bone health, appetite and satiety, inflammation and immune function, and body composition) benefits. Additionally, there is a lack of discussion regarding aspects such as the effect of ITF chain length on its intestinal and extraintestinal effects. The overall objective of this systematic review was to summarize the prebiotic potential of ITF based on the results of human clinical trials in healthy adult populations. Evidence from studies included in the current review suggest that ITF have a prebiotic effect on the intestinal microbiota, promoting the abundances of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii. Beneficial health effects reported following ITF intake include improved intestinal barrier function, improved laxation, increased insulin sensitivity, decreased triglycerides and an improved lipid profile, increased absorption of calcium and magnesium, and increased satiety. While there is some evidence for differing effects of ITF based on chain length, lack of direct comparisons and detailed descriptions of physicochemical properties limit the ability to draw conclusions from human clinical studies. Future research should focus on elucidating the mechanisms by which the intestinal microbiota mediates or modifies the effects of ITF on human health and the contribution of individual factors such as age and metabolic health to move towards personalization of prebiotic application.
Health care is increasingly focused on health at the individual level. In the rapidly evolving field of precision nutrition, researchers aim to identify how genetics, epigenetics, and the microbiome interact to shape an individual's response to diet. With this understanding, personalized responses can be predicted and dietary advice can be tailored to the individual. With the integration of these complex sources of data, an important aspect of precision nutrition research is the methodology used for studying interindividual variability in response to diet. This article stands as the first in a 2-part review of current research investigating the contribution of the gut microbiota to interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as the statistical and bioinformatic methods used to analyze results. Part II reviews the findings of these studies, discusses gaps in our current knowledge, and summarizes directions for future research. Taken together, these reviews summarize the current state of knowledge and provide a foundation for future research on the role of the gut microbiome in precision nutrition.
Protein intake above the Recommended Dietary Allowance (RDA) and resistance training are known anabolic stimuli to support healthy aging. Specifically, protein supplementation after resistance exercise and nightly are strategies to maximize utilization of protein intake above the RDA in healthy adults. As such, the primary objective was to examine the efficacy of protein supplementation and nutritional counseling resulting in either moderate (MOD: ~1.0 g·kg−1·d−1) or higher (HIGH: ~1.6 g·kg−1·d−1) protein intake during resistance training on strength (one-repetition maximum, 1-RM; isokinetic and isometric peak torque) in healthy middle-aged adults. Exploratory analyses include diet-exercise effects on lean body mass (LBM), clinical biomarkers, gut microbiota, and diet composition. 50 middle-aged adults (age: 50 ± 8 y, BMI: 27.2 ± 4.1 kg·m-2) were randomized to either MOD or HIGH protein intake during a 10-week resistance training program (3 × week). Participants received dietary counseling and consumed either 15 g (MOD) or 30 g (HIGH) of protein from lean beef in the immediate post-exercise period and each evening. Maximal strength (1-RM) for all upper and lower body exercises significantly increased with no effect of protein intake (P<0.050). There was a main effect of time for LBM (P<0.005). Cardiovascular, renal, or glycemic biomarkers were not affected by the intervention. Gut microbiota were associated with several health outcomes (P<0.050). In conclusion, higher protein intake above moderate amounts does not potentiate resistance training adaptations in previously untrained middle-aged adults. This trial was registered at clinicaltrials.gov as NCT03029975.
The gut microbiota is increasingly implicated in the health and metabolism of its human host. The host's diet is a major component influencing the composition and function of the gut microbiota, and mounting evidence suggests that the composition and function of the gut microbiota influence the host's metabolic response to diet. This effect of the gut microbiota on personalized dietary response is a growing focus of precision nutrition research and may inform the effort to tailor dietary advice to the individual. Because the gut microbiota has been shown to be malleable to some extent, it may also allow for therapeutic alterations of the gut microbiota in order to alter response to certain dietary components. This article is the second in a 2-part review of the current research in the field of precision nutrition incorporating the gut microbiota into studies investigating interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as analyze the results subsequently obtained. Part II reviews the findings of these studies and discusses the gaps in our current knowledge and directions for future research. The studies reviewed provide the current understanding in this field of research and a foundation from which we may build, utilizing and expanding upon the methods and results they present to inform future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.