Ionic liquids promise far greater electrochemical performance compared to aqueous systems, yet key physicochemical properties governing their assembly at interfaces within commonly used graphitic nanopores remain poorly understood. In this work, we combine synchrotron X-ray scattering with first-principles molecular dynamics simulations to unravel key structural characteristics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([TFSI] -) ionic liquids confined in carbon slit pores. X-ray scattering reveals selective pore filling due to size exclusion, while filled pores exhibit disruption in IL intermolecular structure, the extent of which increases for narrower slit pores. First-principles simulations corroborate this finding and quantitatively describe how perturbations in the local IL structure, particularly the hydrogenbond network, depend strongly on the degree of confinement. Despite significant deviations in structure under confinement, electrochemical stability remains intact, which is important for energy storage based on nanoporous carbon electrodes (e.g., supercapacitors).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.