We describe results from the first statistical study of waveform capture data during 67 interplanetary (IP) shocks with Mach numbers ranging from approximately 1-6. Most of the waveform captures and nearly 100% of the large amplitude waves were in the ramp region. Although solitary waves, Langmuir waves, and ion acoustic waves (IAWs) are all observed in the ramp region of the IP shocks, large amplitude IAWs dominate. The wave amplitude is correlated with the fast mode Mach number and with the shock strength. The observed waves produced anomalous resistivities from approximately 1-856 Omega.m (approximately 10(7) times greater than classical estimates.) The results are consistent with theory suggesting IAWs provide the primary dissipation for low Mach number shocks.
The signature whistle of the Atlantic bottlenose dolphin (Tursiops truncatus) is a well-studied acoustic signal know for broadcasting identity and maintaining contact with conspecifics. Several studies have investigated the use of this signal surrounding the birth of calves to dolphin social groups, although there appears to be discrepancies between the findings of these studies. We aimed to add to the current literature in an attempt to reconcile some of these inconsistencies through investigation of signature whistle production by a bottlenose dolphin group two months prior to and two months following the birth of a calf to one of the social group members. We found that the production of signature whistles matching the contour belonging to our dolphin mother increased significantly in both the pre- and post-partum period. Heightened production of the mother’s signature whistle type in the first week of our focal calf’s life supports the establishment of a recognition system within this time period. Given that learning processes associated with the sound environment appear to begin shortly after calf birth, we also explored the signature whistle rates of the other social group members in an effort to determine whether any signature whistle production influenced the development of the dolphin calf’s own signature whistle type. We found that the signature whistles of the other social group members were significantly lower than production of the mother’s signature whistle until after the first week post-partum. None of the signature whistle types appeared to influence the signature whistle development of our focal calf within the scope of this study, however, as the calf did not develop a signature whistle in her first two months of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.