Electrolytes are an important component of electrochemical energy storage systems and their optimization is critical for emerging beyond lithium ion technologies. Here, an integrated computational-experimental approach is used to rank-order and aid the selection of suitable electrolytes for a Na-ion battery. We present an in silico strategy based on both thermodynamic and kinetic descriptors derived from molecular dynamics simulations to rationally arrive at optimal electrolytes for Na-ion batteries. We benchmarked various electrolytes (pure and binary mixtures of cyclic and acyclic carbonates with NaClO4 salt) to identify appropriate formulations with the overarching goal of simultaneously enhancing cell performance while meeting safety norms. Fundamental insights from computationally derived thermodynamic and kinetic data considerations coupled with atomistic-level description of the solvation dynamics is used to rank order the various electrolytes. Thermodynamic considerations based on free energy evaluation indicate EC:PC as a top electrolyte formulation under equilibrium conditions. However, kinetic descriptors which are important factors dictating the rate capability and power performance suggest EC:DMC and EC:EMC to be among the best formulations. Experimental verification of these optimized formulations was carried out by examining the electrochemical performance of various electrolytes in Na/TiO2nanotubes half cells with NaClO4 salt. Our rate capability studies confirm that EC:DMC and EC:EMC to be the best formulations. These optimized formulations have low-rate specific capacities 120–140 mAh/g whereas the lower ranked electrolytes (EC: DEC) have capacities 95 mAh/g. The various electrolytes are also evaluated from a safety perspective. Such results suggest encouraging prospects for this approach in the a priori prediction of optimal sodium ion systems with possible screening implications for novel battery formulations
We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g by alloying with Li to form BLi. However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g at a current rate of 10 mA g between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li) could be ascribed to a capacitive process and at lower potentials (<∼0.2 V vs. Li/Li) to diffusion-controlled alloying reactions. Solid state nuclear magnetic resonance (NMR) measurement further confirmed that the capacity is from electrochemical reactions between lithium ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.