In today's digital world, rapid technological advancements continue to lessen the burden of tasks for individuals. Among these tasks is communication across perceived language barriers. Indeed, increased attention has been drawn to American Sign Language (ASL) recognition in recent years. Camera-based and motion detection-based methods have been researched extensively; however, there remains a divide in communication between ASL users and non-users. Therefore, this research team proposes the use of a novel wireless sensor (Frequency-Modulated Continuous-Wave Radar) to help bridge the gap in communication. In short, this device sends out signals that detect the user's body positioning in space. These signals then reflect off the body and back to the sensor, developing thousands of cloud points per second, indicating where the body is positioned in space. These cloud points can then be examined for movement over multiple consecutive time frames using a cell division algorithm, ultimately showing how the body moves through space as it completes a single gesture or sentence. At the end of the project, 95% accuracy was achieved in one-object prediction as well as 80% accuracy on cross-object prediction with 30% other objects' data introduced on 19 commonly used gestures. There are 30 samples for each gesture per person from three persons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.