The stratified logrank test can be used to compare survival distributions of several groups of patients, while adjusting for the effect of some discrete variable that may be predictive of the survival outcome. In practice, it can happen that this discrete variable is missing for some patients. An inverse-probability-weighted version of the stratified logrank statistic is introduced to tackle this issue. Its asymptotic distribution is derived under the null hypothesis of equality of the survival distributions.A simulation study is conducted to assess behavior of the proposed test statistic in finite samples. An analysis of a medical dataset illustrates the methodology.
Goodness-of-fit testing is addressed in the stratified proportional hazards model for survival data. A test statistic based on within-strata cumulative sums of martingale residuals over covariates is proposed and its asymptotic distribution is derived under the null hypothesis of model adequacy. A Monte Carlo procedure is proposed to approximate the critical value of the test. Simulation studies are conducted to examine finite-sample performance of the proposed statistic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.