The phenomenon of cytoplasmic male sterility (CMS), consisting in the inability to produce functional pollen due to mutations in mitochondrial genome, has been described in more than 150 plant species. With the discovery of nuclear fertility restorer (Rf) genes capable of suppressing the CMS phenotype, it became possible to use the CMS-Rf genetic systems as the basis for practical utilization of heterosis effect in various crops. Seed production of sunflower hybrids all over the world is based on the extensive use of the PET1 CMS combined with the Rf1 gene. At the same time, data on Rf1 localization, sequence, and molecular basis for the CMS PET1 type restoration of fertility remain unknown. Searching for candidate genes of the Rf1 gene has great fundamental and practical value. Therefore, in this study, association mapping of fertility restorer gene for CMS PET1 in sunflower was performed. The genome-wide association study (GWAS) results made it possible to isolate a segment 7.72 Mb in length on chromosome 13, in which 21 candidates for Rf1 fertility restorer gene were identified, including 20 pentatricopeptide repeat (PPR)family genes and one Probable aldehyde dehydrogenase gene. The results will serve as a basis for further study of the genetic nature and molecular mechanisms of pollen fertility restoration in sunflower, as well as for further intensification of sunflower breeding.
Background
Sunflower is an important oilseed crop domesticated in North America approximately 4000 years ago. During the last century, oil content in sunflower was under strong selection. Further improvement of oil properties achieved by modulating its fatty acid composition is one of the main directions in modern oilseed crop breeding.
Results
We searched for the genetic basis of fatty acid content variation by genotyping 601 inbred sunflower lines and assessing their lipid and fatty acid composition. Our genome-wide association analysis based on the genotypes for 15,483 SNPs and the concentrations of 23 fatty acids, including minor fatty acids, revealed significant genetic associations for eleven of them.
Identified genomic regions included the loci involved in rare fatty acids variation on chromosomes 3 and 14, explaining up to 34.5% of the total variation of docosanoic acid (22:0) in sunflower oil.
Conclusions
This is the first large scale implementation of high-throughput lipidomic profiling to sunflower germplasm characterization. This study contributes to the genetic characterization of Russian sunflower collections, which made a substantial contribution to the development of sunflower as the oilseed crop worldwide, and provides new insights into the genetic control of oil composition that can be implemented in future studies.
Tocopherols are antioxidants that preserve oil lipids against oxidation and serve as a natural source of vitamin E in the human diet. Compared with other major oilseeds like rapeseed and soybean, sunflower (Helianthus annuus L.) exhibits low phenotypic diversity of tocopherol composition, both in wild and cultivated accessions from germplasm collections. Two major mutations that alter tocopherol composition were identified in genetic collections, and several studies suggested additional loci controlling tocopherol composition, with their expression possibly depending on the genetic background. In the present study, we performed QTL mapping of tocopherol composition in two independent F2 crosses between lines with contrasting tocopherol composition from the Pustovoit All-Russia Research Institute of Oil Crops (VNIIMK) collection. We used genotyping-by-sequencing (GBS) to construct single nucleotide polymorphism (SNP) based genetic maps, and performed QTL mapping using quantitative and qualitative encoding for phenotypic traits. Our results support the notion that the tocopherol composition in the assessed crosses is controlled by two loci. We additionally selected and validated two SNP markers for each cross which could be used for marker assisted selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.