Ghrelin and obestatin are two gastrointestinal hormones obtained by post-translational processing of a common precursor, preproghrelin (1). Originally isolated as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R) (2, 3) and for its capacity to stimulate growth hormone (GH) secretion, a lipolytic hormone, ghrelin is also the only orexigenic signal from the gastrointestinal tract and a long-term regulator of energy homeostasis. This 28 amino acid peptide is modified post-translationally with an eight-carbon fatty acid by the enzyme ghrelin-O-acyl-transferase (GOAT) (4, 5). The acylation of ghrelin is required to activate the GHS-R and to mediate its effects on GH secretion and food intake (6). Obestatin was initially identified as an anorexigenic peptide and as the cognate ligand for GPR39, although its effects on food intake and its ability to activate GPR39 are still controversial. In this review, we will focus on the interaction of these two peptides to regulate GH secretion and food intake. We will discuss the controversy around the physiological effects of obestatin and its ability to pharmacologically interact with ghrelin. We will also try to understand how these two apparently antagonistic mediators can be regulated under physiological and pathological conditions, focusing on the impact of nutrition on their secretions, as well as determine whether they relay information about the body's nutritional status. Ghrelin and obestatin are two gastrointestinal peptides obtained by post-translational processing of a common precursor, preproghrelin. Ghrelin is an orexigenic and adipogenic peptide and a potent growth hormone secretagogue (GHS) modified by the enzyme ghrelin-O-acyl-transferase to bind and activate its receptor, the GHS-R. The ghrelin ⁄ GHS-R pathway is complex and the effects of ghrelin on GH secretion, adiposity and food intake appear to be relayed by distinct mechanisms involving different transduction signals and constitutive activity for the GH-R, different cofactors as modulators of endogenous ghrelin signalling and ⁄ or alternative ghrelin receptors. The discovery of obestatin in 2005 brought an additional level of complexity to this fascinating system. Obestatin was initially identified as an anorexigenic peptide and as the cognate ligand for GPR39, but its effect on food intake and its ability to activate GPR39 are still controversial. Although several teams failed to reproduce the anorexigenic actions of obestatin, this peptide has been shown to antagonise GH secretion and food intake induced by ghrelin and could be an interesting pharmacological tool to counteract the actions of ghrelin. Ghrelin and obestatin immunoreactivities are recovered in the blood with an ultradian pulsatility and their concentrations in plasma vary with the nutritional status of the body. It is still a matter of debate whether both hormones are regulated by independent mechanisms and whether obestatin is a physiologically relevant peptide. Nevertheless, a significant number of studies show t...
Summary In leptin-deficient ob/ob mice, obesity and diabetes are associated with abnormal development of neurocircuits in the hypothalamic arcuate nucleus (ARC) 1 , a critical brain area for energy and glucose homeostasis 2 , 3 . As this developmental defect can be remedied by systemic leptin administration, but only if given before postnatal day 28, a critical period (CP) for leptin-dependent development of ARC neurocircuits has been proposed 4 . In other brain areas, CP closure coincides with the appearance of perineuronal nets (PNNs), extracellular matrix specializations that restrict the plasticity of neurons that they enmesh 5 . Here we report that in humans as well as rodents, subsets of neurons in the mediobasal aspect of the ARC are enmeshed by PNN-like structures. In mice, these neurons are densely-packed into a continuous ring that encircles the junction of the ARC and median eminence, which facilitates exposure of ARC neurons to the circulation. Most of the enmeshed neurons are both GABAergic and leptin receptor-positive, including a majority of Agrp neurons. Postnatal formation of the PNN-like structures coincides precisely with closure of the CP for Agrp neuron maturation and is dependent on input from circulating leptin, as postnatal ob/ob mice have reduced ARC PNN-like material that is restored by leptin administration during the CP. We conclude that neurons crucial to metabolic homeostasis are enmeshed by PNN-like structures and organized into a densely packed cluster situated circumferentially at the ARC-ME junction, where metabolically-relevant humoral signals are sensed.
Psychiatric disorders are often associated with metabolic and hormonal alterations, including obesity, diabetes, metabolic syndrome as well as modifications in several biological rhythms including appetite, stress, sleep–wake cycles, and secretion of their corresponding endocrine regulators. Among the gastrointestinal hormones that regulate appetite and adapt the metabolism in response to nutritional, hedonic, and emotional dysfunctions, at the interface between endocrine, metabolic, and psychiatric disorders, ghrelin plays a unique role as the only one increasing appetite. The secretion of ghrelin is altered in several psychiatric disorders (anorexia, schizophrenia) as well as in metabolic disorders (obesity) and in animal models in response to emotional triggers (psychological stress …) but the relationship between these modifications and the physiopathology of psychiatric disorders remains unclear. Recently, a large literature showed that this key metabolic/endocrine regulator is involved in stress and reward-oriented behaviors and regulates anxiety and mood. In addition, preproghrelin is a complex prohormone but the roles of the other ghrelin-derived peptides, thought to act as functional ghrelin antagonists, are largely unknown. Altered ghrelin secretion and/or signaling in psychiatric diseases are thought to participate in altered appetite, hedonic response and reward. Whether this can contribute to the mechanism responsible for the development of the disease or can help to minimize some symptoms associated with these psychiatric disorders is discussed in the present review. We will thus describe (1) the biological actions of ghrelin and ghrelin-derived peptides on food and drugs reward, anxiety and depression, and the physiological consequences of ghrelin invalidation on these parameters, (2) how ghrelin and ghrelin-derived peptides are regulated in animal models of psychiatric diseases and in human psychiatric disorders in relation with the GH axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.