In discussions at the 2015 HICSS meeting, it was argued that loads can provide most of the ancillary services required today and in the future. Through load-level and grid-level control design, high-quality ancillary service for the grid is obtained without impacting quality of service delivered to the consumer. This approach to grid regulation is called demand dispatch: loads are providing service continuously and automatically, without consumer interference.In this paper we ask, what intelligence is required at the grid-level? In particular, does the grid-operator require more than one-way communication to the loads? Our main conclusion: risk is not great in lower frequency ranges, e.g., PJM's RegA or BPA's balancing reserves. In particular, ancillary services from refrigerators and pool-pumps can be obtained successfully with only one-way communication. This requires intelligence at the loads, and much less intelligence at the grid level.
International audience—We consider demand response solutions having the capability to monitor different variables at users' premises, like presence and temperature, and to control individual appliances. We focus on the optimal control of the appliances during time periods where the available capacity is not enough to satisfy the demand generated by houses operating freely. We propose an approach to define the utility of appliances as a function of monitored variables, as well as control schemes to optimize this utility. Global optimums can be reached when a centralized entity (i.e., an aggregator) can gather information from each user and control each individual appliance. This may not be always possible, for example for privacy and/or scalability reasons. We therefore consider, in addition, a system where decisions are taken partially at a centralized site (global power allocation per home) and partially at customer premises (sharing of the allocated power among local appliances). Performances of proposed control mech-anisms are evaluated and compared. We show the potential value of introducing demand response mechanisms at fine granularity
Abstract-The Internet of Things (IoT) paradigm brings an opportunity for advanced Demand Response (DR) solutions. Indeed, it enables visibility and control on the various appliances that may consume, store or generate energy within a home. It has been shown that a centralized control on the appliances of a set of households leads to efficient DR mechanisms; unfortunately, such solutions raise privacy and scalability issues. In this paper we propose an IoT-based DR approach that deals with these issues. Specifically, we propose and analyze a scalable two levels control system where a centralized controller allocates power to each house on one side and, each household implements an IoTbased DR local solution on the other side. A limited feedback to the centralized controller allows to enhance the performance with little impact on privacy. The solution is proposed for the general framework of capacity markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.