Prokaryotes play an important role in biogeochemical cycling in marine ecosystems, but little is known about their diversity and composition, and how they may contribute to the ecological functioning of coastal areas in the South Mediterranean Sea. This study investigated bacterial and archaeal community diversity in seawater samples along the Tunisian coast subject to important physicochemical disturbances. The 16S amplicon sequencing survey revealed higher prokaryotic diversity in the northern Tunisian bays than in southeastern waters (Gulf of Gabès). The major taxonomic groups identified in all samples were Alphaproteobacteria (40.9%), Gammaproteobacteria (18.7%), Marine Group II Euryarchaeota (11.3%), and Cyanobacteria (10.9%). Among them, the relative abundance of Alteromonadales, Prochlorococcus, and some clades of Pelagibacterales (SAR11) significantly differed between the northern and the southern bays, whereas no difference was observed across coastal waters in the archaeal Candidatus Poseidoniales (MGII), Synechococcus, and Pelagibacteraceae (SAR11 clade Ia), for which no relationship was observed with the environmental variables. Both Pseudoalteromonas and Alteromonas levels increased with the increasing salinity, density and nutrients (NH4+ and/or PO43–) gradients detected toward the southern waters, while the SAR11 clades Ib and IV and Prochlorococcus, decreased in the shallow, salty and nutrient-rich coastal waters of the Gulf of Gabès. Rhodobacteraceae was positively correlated with Synechococcus and chlorophyll levels, suggesting a relationship with phytoplankton biomass. The present study provides the first insights into planktonic prokaryotic community composition in the South Mediterranean Sea through the analysis of Tunisian seawaters, which may support further investigations on the role of bacterioplankton in the biogeochemistry of these ecosystems.
(1) Background: Harmful algal blooms (HABs) can negatively impact marine ecosystems, but few studies have evaluated the microbial diversity associated with HABs and its potential role in the fates of these proliferations. (2) Methods: Marine prokaryotic diversity was investigated using high-throughput sequencing of the 16S rRNA gene during the bloom declines of two dinoflagellates detected in the summer of 2019 along the northern and southern Tunisian coasts (South Mediterranean Sea). The species Gymnodinium impudicum (Carthage, Tunis Gulf) and Alexandrium minutum (Sfax, Gabes Gulf) were identified using microscopy and molecular methods and were related to physicochemical factors and prokaryotic compositions. (3) Results: The abundance of G. impudicum decreased over time with decreasing phosphate concentrations. During the G. impudicum bloom decay, prokaryotes were predominated by the archaeal MGII group (Thalassarchaeaceae), Pelagibacterales (SAR11), Rhodobacterales, and Flavobacteriales. At Sfax, the abundance of A. minutum declined with decreasing phosphate concentrations and increasing pH. At the A. minutum peak, prokaryotic communities were largely dominated by anoxygenic phototrophic sulfur-oxidizing Chromatiaceae (Gammaproteobacteria) before decreasing at the end of the survey. Both the ubiquitous archaeal MGII group and Pelagibacterales were found in low proportions during the A. minutum decay. Contrary to the photosynthetic Cyanobacteria, the photo-autotrophic and -heterotrophic Rhodobacterales and Flavobacteriales contents remained stable during the dinoflagellate bloom decays. (4) Conclusions: These results indicated changes in prokaryotic community diversity during dinoflagellate bloom decays, suggesting different bacterial adaptations to environmental conditions, with stable core populations that were potentially able to degrade HABs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.