Phylogenetic trees are leaf-labelled trees used to model the evolution of species. Here we explore the practical impact of kernelization (i.e. data reduction) on the NP-hard problem of computing the TBR distance between two unrooted binary phylogenetic trees. This problem is better-known in the literature as the maximum agreement forest problem, where the goal is to partition the two trees into a minimum number of common, non-overlapping subtrees. We have implemented two well-known reduction rules, the subtree and chain reduction, and five more recent, theoretically stronger reduction rules, and compare the reduction achieved with and without the stronger rules. We find that the new rules yield smaller reduced instances and thus have clear practical added value. In many cases they also cause the TBR distance to decrease in a controlled fashion, which can further facilitate solving the problem in practice. Next, we compare the achieved reduction to the known worst-case theoretical bounds of $$15k-9$$ 15 k - 9 and $$11k-9$$ 11 k - 9 respectively, on the number of leaves of the two reduced trees, where k is the TBR distance, observing in both cases a far larger reduction in practice. As a by-product of our experimental framework we obtain a number of new insights into the actual computation of TBR distance. We find, for example, that very strong lower bounds on TBR distance can be obtained efficiently by randomly sampling certain carefully constructed partitions of the leaf labels, and identify instances which seem particularly challenging to solve exactly. The reduction rules have been implemented within our new solver Tubro which combines kernelization with an Integer Linear Programming (ILP) approach. Tubro also incorporates a number of additional features, such as a cluster reduction and a practical upper-bounding heuristic, and it can leverage combinatorial insights emerging from the proofs of correctness of the reduction rules to simplify the ILP.
Phylogenetic trees are leaf-labelled trees used to model the evolution of species. Here we explore the practical impact of kernelization (i.e. data reduction) on the NP-hard problem of computing the TBR distance between two unrooted binary phylogenetic trees. This problem is better-known in the literature as the maximum agreement forest problem, where the goal is to partition the two trees into a minimum number of common, non-overlapping subtrees. We have implemented two well-known reduction rules, the subtree and chain reduction, and five more recent, theoretically stronger reduction rules, and compare the reduction achieved with and without the stronger rules. We find that the new rules yield smaller reduced instances and thus have clear practical added value. In many cases they also cause the TBR distance to decrease in a controlled fashion, which can further facilitate solving the problem in practice. Next, we compare the achieved reduction to the known worst-case theoretical bounds of 15k−9 and 11k−9 respectively, on the number of leaves of the two reduced trees, where k is the TBR distance, observing in both cases a far larger reduction in practice. As a by-product of our experimental framework we obtain a number of new insights into the actual computation of TBR distance. We find, for example, that very strong lower bounds on TBR distance can be obtained efficiently by randomly sampling certain carefully constructed partitions of the leaf labels, and identify instances which seem particularly challenging to solve exactly. The reduction rules have been implemented within our new solver Tubro which combines kernelization with an Integer Linear Programming (ILP) approach. Tubro also incorporates a number of additional features, such as a cluster reduction and a practical upper-bounding heuristic, and it can leverage combinatorial insights emerging from the proofs of correctness of the reduction rules to simplify the ILP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.