β-glucans are known as biological response modifiers. However, different sources can result in structural differences and as a result differences in their biological activity. The hot water extraction method allows to obtain, high molecular weight β-glucans without altering their structure by using strong chemicals, such as alkalis or acids. Analysis of β-glucans by FT-IR and NMR spectroscopy in solid state is superior to analysis in solution as it allows researchers to study the preserved structure of the extracted polysaccharides. FT-IR spectroscopy was used in this study to make side-by-side comparison analysis of hot water extracted β-glucans from different yeast sources. NMR spectroscopy was used to confirm findings made by FT-IR spectroscopy. Extracted β-glucans exhibit characteristic structure of β-1,3/1,6-linked glucans with noticeable levels of proteins, possibly in a form of oligopeptides, chitin and other impurities. β-glucans obtained from C. guilliermondii, P. pastoris and S. pastorianus exhibited higher protein content. Differences in mannan, chitin and α-glucan content were also observed; however, the species-specific structure of obtained β-glucans could not be confirmed without additional studies. Structural analysis of high molecular weight β-glucans in solid state by FT-IR spectroscopy is difficult or limited due to band intensity changes and overlapping originating from different molecules.
Herein, a technique to analyze air-dried kidney tissue impression smears by means of attenuated total reflection infrared (ATR-IR) spectroscopy is presented. Spectral tumor markers-absorption bands of glycogen-are identified in the ATR-IR spectra of the kidney tissue smear samples. Thin kidney tissue cryo-sections currently used for IR spectroscopic analysis lack such spectral markers as the sample preparation causes irreversible molecular changes in the tissue. In particular, freeze-thaw cycle results in degradation of the glycogen and reduction or complete dissolution of its content. Supervised spectral classification was applied to the recorded spectra of the smears and the test spectra were classified with a high accuracy of 92% for normal tissue and 94% for tumor tissue, respectively. For further development, we propose that combination of the method with optical fiber ATR probes could potentially be used for rapid real-time intra-operative tissue analysis without interfering with either the established protocols of pathological examination or the ordinary workflow of operating surgeon. Such approach could ensure easier transition of the method to clinical applications where it may complement the results of gold standard histopathology examination and aid in more precise resection of kidney tumors.
More than 90% of solid kidney tumors are cancerous and have to be treated by surgical resection where surgical outcomes and patient prognosis are dependent on the tumor discrimination. The development of alternative approaches based on a new generation of fiber attenuated total reflection (ATR) probes could aid tumor identification even under intrasurgical conditions. Herein, fiber ATR IR spectroscopy is employed to distinguish normal and cancerous kidney tissues. Freshly resected tissue samples from 34 patients are investigated under nearly native conditions. Spectral marker bands that allow a reliable discrimination between tumor and normal tissue are identified by a supervised classification algorithm. The absorbance values of the bands at 1025, 1155 and 1240 cm −1 assigned to glycogen and fructose 1,6-bisphosphatase are used as the clearest markers for the tissue discrimination. Absorbance threshold values for tumor and normal tissue are determined by discriminant analysis. This new approach allows the surgeon to make a clinical diagnosis.
Objectives: The aim of this study was to construct an experimental model replicating blood flow within human superior vena cava and to determine the degree of the immediate aspiration of the drug introduced via central venous catheter through the distally positioned dialysis catheter. Methods: A model replicating superior vena cava was built, catheters were inserted into the model, placing the orifice of the central venous catheter in positions regarding the orifice of the arterial lumen in central venous dialysis catheter (from +2 to −8 cm). Methylene blue was used as a tracer, and the concentration was determined by ultraviolet-visible spectroscopy. Four different sets of samples were generated according to infusion and aspiration speeds: continuous–slow, continuous–fast, bolus–slow, and bolus–fast. Results: The concentration of the tracer was related to the distance between the catheter tips, representing a bimodal dependence. When the central venous catheter was placed distally to the central venous dialysis catheter, the aspiration of the tracer was minimal. When withdrawing the central venous catheter proximally, the aspiration of the tracer increased, reaching its peak at −4 cm with aspiration rates form 4.2% to 140.7%. Furthermore, the infusion speed of the tracer had more effect on the aspirated concentrations than the aspiration speed. Conclusion: Findings of our experimental model suggest that concentration of aspired drug is effected by the distance between the central venous catheter and central venous dialysis catheter, being lowest when the drug is infused distally to central venous dialysis catheter. Furthermore, the concentration of the tracer is directly proportional to the infusion speed and far less effected by the aspiration rate of the drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.