With the rising wave of travelers and changing market landscape, understanding marketplace dynamics in commoditized accommodations in the hotel industry has never been more important. In this research, a machine learning approach is applied to build a framework that can forecast the unconstrained and constrained market demand (aggregated and segmented) by leveraging data from disparate sources. Several machine learning algorithms are explored to learn traveler’s booking patterns and the latent progression of the booking curve. This solution can be leveraged by independent hoteliers in their revenue management strategy by comparing their behavior to the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.