This experimental study addresses late transition stages over a conventional airfoil at Reynolds numbers of several ten thousands. The study is based on extensive volumetric flow measurements using constant temperature anemometry. This technique provided both the time-averaged description of the flow field in the vicinity of the wing and the high fidelity spectral analysis inside the separated boundary layer. Large cellular flow structures were observed above the wing. They resemble the stall cells at Reynolds numbers of a few hundred thousands and separation cells at Reynolds numbers of a few hundred. It is shown that most of the energy of the velocity fluctuations within the boundary layer over the forward half of the wing is concentrated in the low-frequency range of the spectrum, where the chord-based Strouhal number is small as compared with unity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.