Efficient bioresource management can alter soil biochemistry and soil physical properties, leading to reduced greenhouse gas (GHG) emissions from agricultural fields. The objective of this study was to evaluate the role of organic amendments including biodigestate (BD), biochar (BC), and their combinations with inorganic fertilizer (IF) in increasing carbon sequestration potential and mitigation of GHG emissions from potato (Solanum tuberosum) fields. Six soil amendments including BD, BC, IF, and their combinations BDIF and BCIF, and control (C) were replicated four times under a completely randomized block design during the 2021 growing season of potatoes in Prince Edward Island, Canada. An LI-COR gas analyzer was used to monitor emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from treatment plots. Analysis of variance (ANOVA) results depicted higher soil moisture-holding capacities in plots at relatively lower elevations and comparatively lesser volumetric moisture content in plots at higher elevations. Soil moisture was also impacted by soil temperature and rainfall events. There was a significant effect of events of data collection, i.e., the length of the growing season (p-value ≤ 0.05) on soil surface temperature, leading to increased GHG emissions during the summer months. ANOVA results also revealed that BD, BC, and BCIF significantly (p-value ≤ 0.05) sequestered more soil organic carbon than other treatments. The six experimental treatments and twelve data collection events had significant effects (p-value ≤ 0.05) on the emission of CO2. However, the BD plots had the least emissions of CO2 followed by BC plots, and the emissions increased with an increase in atmospheric/soil temperature. Results concluded that organic fertilizers and their combinations with inorganic fertilizers help to reduce the emissions from the agricultural soils and enhance environmental sustainability.
Soil chemical properties can be improved by incorporating crop residues in soil and letting it decompose. This study explored the use of incorporating residues of cover crops for improvements in soil chemical properties including soil organic matter (SOM), soil pH, and the selected soil macro- and micronutrients in greenhouse and field trials. Factors of interest included (i) cover crops and their combinations and (ii) methods of crop termination and incorporation in soil (disc, mow + disc, glyphosate, roller crimper). The greenhouse trial showed up to a 20% higher amount of SOM accumulated in soils incorporated with crop residues. Buckwheat (3.12%) and phacelia (3.12%) produced significantly different and larger SOM than that of the control treatment that received no crop residues (p ≤ 0.05). The soil pH of the brown mustard treatment was also significantly affected by the experimental treatments (p ≤ 0.05). The incorporation of crop residues did not affect soil phosphorous (P) or potassium (K) concentrations, except for brown mustard, with significantly higher values of P and K than the control treatment. Calcium (Ca) was significantly higher in the soil of phacelia + pea treatment (p ≤ 0.05). Buckwheat + pea produced a higher concentration of Ca (1028 mg/kg) followed by buckwheat alone (1006 mg/kg). Analysis of variance (ANOVA) calculated on the results of the field trial showed that the mix treatment that had a mixture of four cover crops significantly increased the SOM content. Buckwheat produced the highest (2.95%) SOM, then brown mustard and timothy. This study concludes that, irrespective of the tillage incorporation methods, the residues from cover crops are a potential source of improvement in soil health, and this practice may promote sustainable agriculture in conditions similar to those in this study.
Decreasing soil organic matter (SOM) is a serious threat to global agriculture, and has been linked to reduced productivity in agroecosystems. It has been hypothesized that long-term continuous agricultural cultivation using the industrial model diminishes SOM resulting in deteriorating soil health. Therefore, this research study explores whether or not this globally recognized hypothesis holds true for the soils of Prince Edward Island (PEI), Canada. This research seeks to bridge this knowledge gap with an overall goal of investigating the carbon footprint of agricultural cultivation of potatoes, a major crop in PEI, and its impact on agricultural soils. The specific objectives of the study are to i) monitor the impact of long-term agricultural cultivation on the carbon sequestration (CS) and CO2 emissions from highly cultivated soils in relation to soil variability, and ii) simulate CS and CO2 emissions from potato fields. Soil samples and CO2 emission data were collected from grids of four different organic and inorganic treatments (control, synthetic fertilizer, compost and biochar) established in soils of PEI under long-term agricultural cultivation. Soil samples were analyzed for soil organic carbon (SOC) and other major soil properties. Gas samples were analyzed for concentration of CO2. Results showed that there were significant relationships found among various soil properties, CO2 emissions and the yield of potato tubers. Currently, the Rothamsted carbon turnover model is being calibrated to simulate SOC and concentration of CO2 emissions from the experimental treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.