Among ferroelectric crystals based on small molecules, plastic/ferroelectric crystals are currently receiving particular attention because they can be used as bulk polycrystals. Herein, we show that an ionic molecular ferroelectric crystal, guanidinium tetrafluoroborate, exhibits significant malleability and multiaxial ferroelectricity despite the absence of a plastic crystal phase. Powder samples of this crystal can be processed into transparent bulk crystalline plates either by pressforming or by melt-growing. The plates show high ferroelectric performance and related properties, demonstrating the largest hitherto reported spontaneous polarization for bulk polycrystals of small-moleculebased ferroelectrics. Owing to the ready availability of large-scale materials and processability into various bulk crystalline forms, this ferroelectric crystal represents a highly promising functional material that will boost research on diverse applications as bulk crystals.
Among ferroelectric crystals based on small molecules, plastic/ferroelectric crystals are currently receiving particular attention because they can be used as bulk polycrystals. Herein, we show that an ionic molecular ferroelectric crystal, guanidinium tetrafluoroborate, exhibits significant malleability and multiaxial ferroelectricity despite the absence of a plastic crystal phase. Powder samples of this crystal can be processed into transparent bulk crystalline plates either by pressforming or by melt-growing. The plates show high ferroelectric performance and related properties, demonstrating the largest hitherto reported spontaneous polarization for bulk polycrystals of small-moleculebased ferroelectrics. Owing to the ready availability of large-scale materials and processability into various bulk crystalline forms, this ferroelectric crystal represents a highly promising functional material that will boost research on diverse applications as bulk crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.