Coproporphyrinogen III oxidase (CPO) catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX in heme biosynthesis and is shared in chlorophyll biosynthesis in photosynthetic organisms. There are two analogous CPOs, oxygen-dependent (HemF) and oxygen-independent (HemN) CPOs, in various organisms. Little information on cyanobacterial CPOs has been available to date. In the genome of the cyanobacterium Synechocystis sp. PCC 6803 there is one hemF-like gene, sll1185, and two hemN-like genes, sll1876 and sll1917. The three genes were overexpressed in Escherichia coli and purified to homogeneity. Sll1185 showed CPO activity under both aerobic and anaerobic conditions. While Sll1876 and Sll1917 showed absorbance spectra indicative of Fe-S proteins, only Sll1876 showed CPO activity under anaerobic conditions. Three mutants lacking one of these genes were isolated. The Deltasll1185 mutant failed to grow under aerobic conditions, with accumulation of coproporphyrin III. This growth defect was restored by cultivation under micro-oxic conditions. The growth of the Deltasll1876 mutant was significantly slower than that of the wild type under micro-oxic conditions, while it grew normally under aerobic conditions. Coproporphyrin III was accumulated at a low but significant level in the Deltasll1876 mutant grown under micro-oxic conditions. There was no detectable phenotype in Deltasll1917 under the conditions we examined. These results suggested that sll1185 encodes HemF as the sole CPO under aerobic conditions and that sll1876 encodes HemN operating under micro-oxic conditions, together with HemF. Such a differential operation of CPOs would ensure the stable supply of tetrapyrrole pigments under environments where oxygen levels fluctuate greatly.
Heme oxygenase (HO) catalyzes the oxygen-dependent cleavage of heme to produce biliverdin IXα in phycobilin biosynthesis. In the genome of the cyanobacterium Synechocystis sp. PCC 6803 there are two genes, ho1 (sll1184) and ho2 (sll1875), encoding HO isoforms. Reverse transcription-PCR indicated that ho1 is constitutively expressed, and ho2 is induced under micro-oxic conditions. A mutant lacking ho1 (Δho1) failed to grow under aerobic conditions while it did grow at a significantly slower rate than the wild type under anaerobic (micro-oxic) conditions. When micro-oxically grown Δho1 was incubated under aerobic conditions, the cells underwent chlorosis with a significant decrease in phycocyanin accompanied by anomalous accumulation of protoporphyrin IX. These results suggested that HO1 is essential for aerobic growth as the sole HO and is dispensable under micro-oxic conditions. A mutant lacking ho2 (Δho2) grew under both aerobic and micro-oxic conditions like the wild type at low light intensity (50 μmol(photon) m⁻² s⁻¹). At higher light intensity (120 μmol(photon) m⁻² s⁻¹) the Δho2 mutant showed significant growth retardation under micro-oxic conditions. It is suggested that HO2 operates as a dominant HO under high light and micro-oxic environments and acts as an accessory HO at low light intensity. Constitutive expression of HO2 in a neutral site of the chromosome restored aerobic growth of Δho1, suggesting that HO2 has an activity high enough to substitute for HO1 under aerobic conditions. The differential operation of two isoforms/enzymes in cyanobacterial tetrapyrrole biosynthesis to adapt to low oxygen environments is discussed, including three other reactions.
Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes.
Background: ChlR activates the transcription of genes encoding low-oxygen-type enzymes in response to hypoxia in cyanobacteria.
Results:The chlR-lacking mutant showed a novel "oxygen-induced" greening process upon exposure to air. Conclusion: The contents of photosystems were correlated well with the chlorophyll contents in the greening process. Significance: Oxygen-induced greening provides a promising alternative system to investigate the biogenesis of photosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.