Concentric left ventricular (LV) remodelling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodelling in diabetes, per se, is unclear, but may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship amongst myocardial metabolic changes and LV remodelling in T2DM. Forty-six non-hypertensive T2DM patients and twenty matched controls underwent cardiovascular magnetic resonance to assess LV remodelling (LV mass to LV end diastolic volume ratio-LVMVR), function, pre- and post-contrast tissue characterisation using T1 mapping, 1H-, 31P-magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine to ATP ratio (PCr/ATP) respectively. When compared to body mass index and blood pressure matched controls, diabetes was associated with: concentric LV remodelling, higher MTG, impaired myocardial energetics and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodelling and systolic strain. Extracellular volume fraction was unchanged, indicating absence of fibrosis. In conclusion, cardiac steatosis may contribute to LV concentric remodelling and contractile dysfunction in diabetes. As cardiac steatosis is modifiable, strategies aimed at reducing myocardial triglyceride may be beneficial in reversing concentric remodelling and improving contractile function in the diabetic heart.
BackgroundType 2 diabetes (T2D) and obesity are associated with nonalcoholic fatty liver disease, cardiomyopathy, and cardiovascular mortality. Both show stronger links between ectopic and visceral fat deposition, and an increased cardiometabolic risk compared with subcutaneous fat.ObjectivesThis study investigated whether lean patients (Ln) with T2D exhibit increased ectopic and visceral fat deposition and whether these are linked to cardiac and hepatic changes.MethodsTwenty-seven obese patients (Ob) with T2D, 15 Ln-T2D, and 12 normal-weight control subjects were studied. Subjects underwent cardiac computed tomography, cardiac magnetic resonance imaging (MRI), proton and phosphorus MR spectroscopy, and multiparametric liver MR, including hepatic proton MRS, T1- and T2*-mapping yielding “iron-corrected T1” [cT1].ResultsDiabetes, with or without obesity, was associated with increased myocardial triglyceride content (p = 0.01), increased hepatic triglyceride content (p = 0.04), and impaired myocardial energetics (p = 0.04). Although cardiac structural changes, steatosis, and energetics were similar between the T2D groups, epicardial fat (p = 0.04), hepatic triglyceride (p = 0.01), and insulin resistance (p = 0.03) were higher in Ob-T2D. Epicardial fat, hepatic triglyceride, and insulin resistance correlated negatively with systolic strain and diastolic strain rates, which were only significantly impaired in Ob-T2D (p < 0.001 and p = 0.006, respectively). Fibroinflammatory liver disease (elevated cT1) was only evident in Ob-T2D patients. cT1 correlated with hepatic and epicardial fat (p < 0.001 and p = 0.01, respectively).ConclusionsIrrespective of body mass index, diabetes is related to significant abnormalities in cardiac structure, energetics, and cardiac and hepatic steatosis. Obese patients with T2D show a greater propensity for ectopic and visceral fat deposition.
Aims Patients with type 2 diabetes mellitus (T2DM) are known to have impaired resting myocardial energetics and impaired myocardial perfusion reserve, even in the absence of obstructive epicardial coronary artery disease (CAD). Whether or not the pre-existing energetic deficit is exacerbated by exercise, and whether the impaired myocardial perfusion causes deoxygenation and further energetic derangement during exercise stress, is uncertain. Methods and results Thirty-one T2DM patients, on oral antidiabetic therapies with a mean HBA1c of 7.4 ± 1.3%, and 17 matched controls underwent adenosine stress cardiovascular magnetic resonance for assessment of perfusion [myocardial perfusion reserve index (MPRI)] and oxygenation [blood-oxygen level-dependent (BOLD) signal intensity change (SIΔ)]. Cardiac phosphorus-MR spectroscopy was performed at rest and during leg exercise. Significant CAD (>50% coronary stenosis) was excluded in all patients by coronary computed tomographic angiography. Resting phosphocreatine to ATP (PCr/ATP) was reduced by 17% in patients (1.74 ± 0.26, P = 0.001), compared with controls (2.07 ± 0.35); during exercise, there was a further 12% reduction in PCr/ATP (P = 0.005) in T2DM patients, but no change in controls. Myocardial perfusion and oxygenation were decreased in T2DM (MPRI 1.61 ± 0.43 vs. 2.11 ± 0.68 in controls, P = 0.002; BOLD SIΔ 7.3 ± 7.8 vs. 17.1 ± 7.2% in controls, P < 0.001). Exercise PCr/ATP correlated with MPRI (r = 0.50, P = 0.001) and BOLD SIΔ (r = 0.32, P = 0.025), but there were no correlations between rest PCr/ATP and MPRI or BOLD SIΔ. Conclusion The pre-existing energetic deficit in diabetic cardiomyopathy is exacerbated by exercise; stress PCr/ATP correlates with impaired perfusion and oxygenation. Our findings suggest that, in diabetes, coronary microvascular dysfunction exacerbates derangement of cardiac energetics under conditions of increased workload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.