We report the results of a selection for single-stranded DNA oligonucleotide ligands to the serine protease thrombin using recently developed methods. This selection yielded a family of DNA sequences that conform to a consensus structure comprised of a unimolecular quadruplex motif and complementary flanking sequences capable of forming an additional Watson-Crick duplex motif. This novel quadruplex/duplex structure was not reported in a previous selection for DNA molecules which bind to thrombin [Bock et al. (1992) Nature 355, 564-566]. All quadruplex/duplex molecules tested bound to thrombin with higher affinity than quadruplex structures lacking the duplex structure. However, binding affinities did not always correlate with inhibitory potency since some molecules with high affinity were not potent inhibitors in vitro. 1H NMR spectroscopy studies demonstrated that the complementarity of bases in the duplex portion of a selected sequence allows it to form multimolecular structures. Constraining these molecules to the unimolecular quadruplex/duplex structure by bridging the 5' and 3' ends of the duplex motif with either triethylene glycol or disulfide bonds improved their thrombin inhibitory activity. All bridged quadruplex/duplex molecules were more potent inhibitors than molecules with only a quadruplex motif. Bridging the ends of these structures not only increased thrombin inhibition but also improved resistance to nucleases in serum more than 40-fold over the unbridged quadruplex. In addition, we have found that both the length and sequence of the duplex motif are important for inhibition.
A series of double-stranded, cyclic oligodeoxynucleotides with non-nucleotide bridges have been synthesized, and their physicochemical properties and susceptibility to enzymes have been investigated. These bridged duplexes are of potential interest for their binding properties to transcription factors and other DNA-binding proteins. Triethylene glycol has been employed as the bridge to alter the lipophilicity of the duplex and avoid the potential for enzymatic cleavage. The synthetic route involved the synthesis of a 3'-phosphorylated, nicked double-stranded precursor with the final internucleotide bond being formed chemically using a water soluble carbodiimide. These bridged duplexes have high thermal dissociation temperatures, and the Tm for a triethylene-bridged 20 base pair duplex was higher than that for the corresponding pentathymidylate-bridged duplex. EcoR I endonuclease cleaved a ligated, bridged duplex at a slower rate than the corresponding unmodified duplex, whereas the unligated, bridged duplex was cleaved more rapidly. Sufficient amounts of the bridged octamer and dodecamer were prepared for proton NMR spectroscopic studies, and 2D COSY and NOESY spectra were obtained. The results indicate that the ligated duplex has a B-form conformation.
An effective, convenient method for the circularization of oligonucleotides has been developed. This procedure involved preparation of an oligonucleotide with backbone-linked 5'- and 3'-terminal hexamethylenethiol groups, followed by oxidation of the thiol groups with air of oxygen to produce the corresponding circular sequence bridged via a bis(hexamethylene)-disulfide moiety. The method has been applied to the circularization of oligodeoxynucleotide sequences of varying lengths (5, 10, 15, 20, 30 and 40 bases), and the circularization process was highly efficient as shown by HPLC or gel electrophoresis of the crude reaction mixtures. Competing reactions such as dimerization were not significant except for the longer sequences (30 and 40 bases). The circularization of an eight base RNA sequence was also accomplished, as well as hexa-ethylene glycol bridged poly-T sequences capable of triplex formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.