Fuel cavitation can cause damage to the structure of an injector control valve, which can further affect the service life of the injector. Therefore, it is of great importance to carry out research on the mechanism of cavitation in injector control valves. In this study, the dynamic evolution of the cavitation and fuel flow characteristics during the opening of a ball valve in a high‐pressure common rail injector control valve were studied. First, a transient CFD simulation of the cavitation during the opening of the control valve was performed using dynamic mesh technology to analyze the evolution and formation mechanism of the cavitation. The cavitation was influenced by the fuel flow velocity, which was affected by the sealing cone angle and the ball valve movement. Additionally, the fuel reflux could effectively inhibit the development of cavitation. By comparing with the pressure, velocity, and mass flow rate of the fuel under conditions without cavitation, it was found that the cavitation had a remarkable effect on reducing the hydraulic shock to the ball valve and sealing cone as well as stabilizing the fluctuation of the fuel velocity in the control chamber. In addition, the cavitation noticeably decreased the fuel mass flow rate (by up to 32% at 0.015 ms) and increased the average pressure in the chamber (by up to 29.1% at 0.01 ms), ultimately leading to a slower response of the control valve. The analysis of different inlet pressures of the control valve indicated that the increase in the inlet pressure caused the cavitation to extend upward along the sealing cone, and that the cavitation ring area and the cavitation strength increased.
Common rail injector response characteristics depend on the control chamber pressure change rate, the outlet throttle diameter by manufacturing errors, or wear-induced deviations that affect the rate of pressure change in the control chamber, so the accuracy of the outlet throttle diameter directly affects the control valve response consistency. This paper presents a computational fluid dynamics (CFD) simulation of the effect of the deviation of the outlet throttle diameter on the average mass flow rate of the outlet throttle during the opening of the spherical valve in order to reduce this difference and ensure uniform injection characteristics. The results illustrate that with the increase in outlet throttle diameter deviation, the volume of gas phase in the control valve increases and the rate of pressure reduction in the control chamber accelerates, and the sensitivity coefficient of the average mass flow rate of the outlet throttle to the outlet throttle diameter deviation remains unchanged at 24.77. Cavitation occurs in the area of the outlet throttle when the spherical valve lift is 0.045 mm. The increase in rail pressure not only leads to an increase in the low-pressure area on the inner wall of the outlet throttle, an increase in the volume share of the gas phase, and an increase in the hydraulic impact on the sealing wall but also makes the average mass flow rate of the outlet throttle and the rate of change of the control chamber pressure during the opening of the spherical valve more sensitive to the deviation of the outlet throttle diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.