Kanker payudara merupakan tumor ganas yang tumbuh pada sel-sel payudara dan dapat menyebar di antara jaringan atau organ di sekitar payudara dan berpindah ke bagian tubuh lainnya. Jika deteksi kanker dilakukan sejak dini, memungkinkan dilakukan penanganan yang lebih baik dan timbulnya sel-sel kanker dapat diatasi dengan segera dan dihentikan penyebarannya. Untuk membantu meningkatkan kemampuan pendeteksian otomatis dapat digunakan teknik machine learning dengan metode klasifikasi. Salah satu metode klasifikasi yang dapat digunakan yaitu metode Support Vector Machine. Pada penelitian ini, metode Support Vector Machine diterapkan pada Breast Cancer Coimbra Data Set. Penerapan Backward Elimination bertujuan untuk mengoptimalkan performa suatu model dengan sistem kerja pemilihan mundur dan memilih atribut yang paling relevan pada proses klasifikasi. Hasil penelitian klasifikasi pasien kanker payudara menggunakan metode Support Vector Machine menghasilkan nilai akurasi sebesar 65,22% dan nilai AUC sebesar 0,700 yang termasuk ke dalam kategori Fair Classification. Sedangkan hasil penelitian klasifikasi pasien kanker payudara menggunakan metode Support Vector Machine dengan Backward Elimination menghasilkan nilai akurasi sebesar 95,65% dan nilai AUC sebesar 1,000 yang termasuk ke dalam kategori Excellent Classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.