In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.
Many types of tumor cell are devoid of the extracellular matrix proteoglycan osteoglycin (Ogn), but its role in tumor biology is poorly studied. Here we show that RNAi of Ogn attenuates stress-triggered cell death, whereas its overexpression increases cell death. We found that the transcription factor C/EBPβ regulates the expression of Ogn. C/EBPβ is expressed as a full-length, active form (LAP) and as a truncated, dominant-negative form (LIP), and the LIP/LAP ratio is positively correlated with the extent of cell death under stress. For example, we reported that drug-resistant tumor cells lack LIP altogether, and its supplementation abolished their resistance to chemotherapy and to endoplasmic reticulum (ER) stress. Here we further show that elevated LIP/LAP ratio robustly increased Ogn expression and cell death under stress by modulating the mitogen-activated protein kinase/activator protein 1 pathway (MAPK/AP-1). Our findings suggest that LIP deficiency renders tumor cell resistant to ER stress by preventing the induction of Ogn.
HSF1 promotes inflammation induced tumor development through ECM remodelingAbstractIn the colon, long-term exposure to chronic inflammation drives colitis associated colon cancer (CAC) in patients with inflammatory bowel disease (IBD). Chronic inflammation underlies tumor initiation, promotion, invasion, and metastasis. While the causal and clinical link between chronic inflammation and CAC is well established, we lack a molecular understanding of what is the way in which chronic inflammation leads to develop colon cancer. Within the tumor, cancer cells are surrounded by a variety of non-malignant cells, such as macrophages, endothelial cells, neutrophils, cancer-associated fibroblasts (CAFs), and together with the extracellular matrix (ECM) they compose the tumor microenvironment (TME), also termed the stroma. Even the most aggressive cancers depend and interact with their environment mostly through secreted factors. Unlike cancer cells, stromal cells are genomically stable, and do not harbor oncogenic mutations that could drive their co-evolution and functional reprogramming. Rather, stromal reprogramming is thought to be achieved by transcriptional rewiring. Previous work by us and others has shown that the master regulator heat shock factor 1 (HSF1) plays a crucial role in this process, by mediating a transcriptional program in fibroblasts that enables their reprogramming into cancer-associated fibroblasts (CAFs) to promote malignancy. We hypothesizde that HSF1 plays a crucial role in inflammation-driven cancer by initiation of a transcriptional program that leads to changes in the extracellular matrix (ECM). We found that, in cell culture, cancer-induced ECM assembly by fibroblasts requires HSF1. Using an inflammation-driven cancer model in mice, we measured the changes in proteomic and ECM organization over time. We found that HSF1 drives a transcriptional program that leads to ECM remodeling in early stages and results in development of colon cancer. Loss of HSF1 prevents inflammation-induced ECM remodeling. Further to that, in CAC patients, we found high activation of stromal HSF1 and similarity to our HSF1 proteomic ECM signature in human colorectal cancer driven by HSF1. Thus, HSF1-dependent ECM remodeling mediates the transition from chronic inflammation to colon cancer. Citation Format: Oshrat Levi Galibov, Hagar Lavon, Rina Wassermann-Dozorets, Meirav Pevsner-Fischer, Shimrit Mayer, Esther Wershof, Yaniv Stein, Lauren E. Brown, Wenhan Zhang, Gil Friedman, Reinat Nevo, Ofra Golani, Lior H. Katz, Rona Yaeger, Ido Laish, John A. Porco, Erik Sahai, Dror S Shouval, David Kelsen, Ruth Scherz-Shouval. HSF1 promotes inflammation induced tumor development through ECM remodeling [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB204.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.