The in ovo electroporation technique in chicken embryos has enabled investigators to uncover the functions of numerous developmental genes. In this technique, the ubiquitous promoter, CAGGS (CMV base), has often been used for overexpression experiments. However, if a given gene plays a role in multiple steps of development and if overexpression of this gene causes fatal consequences at the time of electroporation, its roles in later steps of development would be overlooked. Thus, a technique with which expression of an electroporated DNA can be controlled in a stage-specific manner needs to be formulated. Here we show for the first time that the tetracycline-controlled expression method, "tet-on" and "tet-off", works efficiently to regulate gene expression in electroporated chicken embryos. We demonstrate that the onset or termination of expression of an electroporated DNA can be precisely controlled by timing the administration of tetracycline into an egg. Furthermore, with this technique we have revealed previously unknown roles of RhoA, cMeso-1 and Pax2 in early somitogenesis. In particular, cMeso-1 appears to be involved in cell condensation of a newly forming somite by regulating Pax2 and NCAM expression. Thus, the novel molecular technique in chickens proposed in this study provides a useful tool to investigate stage-specific roles of developmental genes.
Abstract. Mammalian preimplantation embryonic development is achieved by tightly coordinated regulation of a great variety of temporal and spatial changes. Therefore, it would be valuable to analyze these events three-dimensionally and dynamically. We have previously developed a live-cell imaging method based on the expression of fluorescent proteins, using mRNA injection and time-lapse florescence microscopy. However, with conventional fluorescent microscopy, three-dimensional images could not be obtained due to the thickness of the embryos and the optical problem in which 'out-of focus blur' cannot be eliminated. Moreover, as the repeated exposure of intense excitation light to the cell yields phototoxicity, long-term observation was detrimental to embryonic development. Here, we improved our imaging system to enable six-dimensional live-cell imaging of mouse preimplantation embryos (x, y and z axes, time-lapse, multicolor and multisample). Importantly, by improving the imaging devices and optimizing the conditions for imaging, such as intensity of excitation and time intervals for image acquisition, the procedure itself was not detrimental to full-term development, although it is a prolonged imaging process. For example, live pups were obtained from embryos to which two different wavelengths of excitation (488 and 561 nm) were applied at 7.5-min intervals for about 70 h, and 51 images were acquired in the z axis at each time point; thus, a total of 56,814 fluorescent images were taken. All the pups were healthy, reproductively normal and not transgenic. Thus, this live-cell imaging technology is safe for full-term mouse development. This offers a novel approach for developmental and reproductive research in that it enables both retrospective and prospective analyses of development. It might also be applicable to assessment of embryo quality in fields such as human reproductive technology and production animal research. Key words: Embryo assessment, Full-term development, Live-cell imaging, Preimplantation embryo, Spinning-disk confocal microscopy (J. Reprod. Dev. 55: [343][344][345][346][347][348][349][350] 2009) ammalian preimplantation development is a process in which the union of two highly specialized gametes endows the resulting zygote with the potential to form undifferentiated cell types. This is followed by cell proliferation and the beginning of differentiation during the brief period leading up to implantation. In these processes, a number of cellular components and structures are regulated spatially and temporally, as seen in repeated cell division, cell cycle progression and genomic reprogramming via global epigenetic modifications [1]. Hence, many researchers have been attracted to these fundamental biological processes. However, the numbers of oocytes and embryos that can be collected are very limited, especially in mammals. Therefore, analysis of molecular mechanisms is hampered because of difficulties in conducting biochemical analyses on sufficient materials. Also, immunostaining methods ...
Abstract. Although the somatic cloning technique has been used for numerous applications and basic research of reprogramming in various species, extremely low success rates have plagued this technique for a decade. Further in mice, the "clonable" strains have been limited to mainly hybrid F1 strains such as B6D2F1. Recently, we established a new efficient cloning technique using trichostatin A (TSA) which leads to a 2-5 fold increase in success rates for mouse cloning of B6D2F1 cumulus cells. To further test the validity of this TSA cloning technique, we tried to clone the adult ICR mouse, an outbred strain, which has never been directly cloned before. Only when TSA was used did we obtain both male and female cloned mice from cumulus and fibroblast cells of adult ICR mice with 4-5% success rates, which is comparable to 5-7% of B6D2F1. Thus, the TSA treatment is the first cloning technique to allow us to successfully clone outbred mice, demonstrating that this technique not only improves the success rates of cloning from hybrid strains, but also enables mouse cloning from normally "unclonable" strains.
Recently, ES cell lines were established from single blastomeres taken from eight-cell embryos in mice and humans with success rates of 4% and 2%, respectively, which suggests that the method could be used in regenerative medicine to reduce ethical concerns over harm to embryos. However, those studies used other ES cells as supporting cells. Here, we report a simple and highly efficient method of establishing mouse ES cell lines from single blastomeres, in which single blastomeres are simply plated onto a feeder layer of mouse embryonic fibroblasts with modified ES cell medium. A total of 112 ES cell lines were established from two-cell (establishment rate, 50%-69%), early four-cell (28%-40%), late four-cell (22%), and eight-cell (14%-16%) stage embryos. We also successfully established 18 parthenogenetic ES cell lines from first (36%-40%) and second polar bodies (33%), the nuclei of which were reconstructed to embryos by nuclear transfer. Most cell lines examined maintained normal karyotypes and expressed markers of pluripotency, including germline transmission in chimeric mice. Our results suggest that the single cells of all early-stage embryos or polar bodies have the potential to be converted into ES cells without any special treatment. STEM CELLS 2007;25:986 -993 Disclosure of potential conflicts of interest is found at the end of this article.
ACS during first mitosis appears to be a major cause of early pregnancy losses in ICSI-generated mouse embryos. Moreover, this novel imaging technology could be applicable as a method for the assessment of embryo quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.