The thermal sensitivity enhancement of Tb3+-centered luminescence of dimer complexes with thiacalix[4]arene derivatives was achieved through their upper-rim bromination.
The authors describe new ligands with two 1,3-diketone groups and two heteroaromatic (pyridyl or quinolyl) moieties embedded to the upper and lower rims of dibromo-substituted calix[4]arene scaffold. The ligands bind Tb(III) ions in alkaline DMF solutions to form 1:1 complexes. The strong Tb(III)-centered luminescence (with excitation/emission peaks at 330/545 nm) of the complexes results from efficient ligand-to-metal energy transfer. The complexes were incorporated into polystyrenesulfonate (PSS) colloids by diluting a DMF solution of the complex with aqueous solution of PSS. The luminescence of the colloids is quenched by copper(II), and this was used to develop a method for its fluorometric determination in nanomolar concentrations. The lower limit of detection is 0.88 nM. Quenching is a result of (a) ion exchange which converts the terbium complexes into their copper counterparts, and (b) energy transfer from Tb(III) to Cu(II) complexes. The low cytotoxicity of the colloidal nanoprobe conceivably makes it a promising tool for use in cellular imaging. Graphical abstract New calix[4]arene derivative provide efficient binding sites for Tb(III) and Cu(II) ions. The Tb(III) complexes were embedded to core-shell nanoparticles by solvent-mediated aggregation followed by polystryrenesulfonate deposition. The nanoparticles exhibit luminescence response on copper ions in nanomolar concentration range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.