At the late stage of field development, residual oil reserves undergo a significant change from mobile to sedentary and stationary. These reserves are mainly located in technogenically and production altered, watered layers and areas of deposits. Localization and development of such sources of hydrocarbons is an effective method of increasing the final oil recovery factor in mature fields, due to the presence of a ready-made developed infrastructure for production, transportation and refining, as well as the availability of highly qualified personnel. This article considers an approach that allows, based on neural network algorithms, the estimation the volumes and localization of residual oil reserves in multi-layer deposits in combination with the analysis of geochemical studies of reservoir fluids. The use of machine learning algorithms allows a targeted approach to the development of residual reserves by automated selection of wellwork. This approach significantly reduces the manual labor of specialists for data processing and decision-making time.
Gas component study is one of the important tasks of petroleum geology. Gas component can exist in various forms in sedimentary rocks. Of great interest is nitrogen, the gaseous accumulations of which are formed in oil-bearing strata, causing complications during the oilfield development. The problem of abnormal nitrogen accumulations had great relevance in the fields of the Volga-Ural petroleum province, which is one of the long-term developed with a large stock of wells for various purposes. This article discusses possible sources of gaseous nitrogen and the reasons for its accumulations in oil-bearing reservoirs. The main purpose of the article is to clarify the reasons for the gaseous nitrogen and its deposits formation. The main patterns of the areal distribution of nitrogen gas accumulations in oil-bearing strata are revealed on the basis of field, hydrogeological, geological and geophysical researches data analysis. It has been established that during the gas caps formation, the source of gaseous nitrogen is its dissolved compounds in groundwater and oil, biochemical decomposition of which leads to the dissolved molecular nitrogen accumulation in a liquid medium. The release of free gaseous nitrogen and the formation of its accumulations is associated with the decompression of formation waters for natural (geological) or man-made reasons (hydrocarbons extraction). Disturbance of the natural hydrodynamic regime in oil-bearing formations leads to the release of gaseous nitrogen and the formation of its accumulations under favorable conditions (the presence of reservoirs, structures and impermeable rocks in the top of the formation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.