Twitter menjadi salah satu media sosial yang paling umum digunakan oleh masyarakat Indonesia. Dengan kepopuleran yang dimilikinya, menjadikan Twitter salah satu laman untuk mengekspresikan opini publik mengenai isu yang sedang dalam perbincangan. Undang-Undang Cipta Kerja adalah Omnibus Law pertama dalam hukum Indonesia yang disahkan yang mana didalamnya terdapat aturan yang mengatur tentang ketenagakerjaan, penyederhanaan perizinan, persyaratan investasi, hingga administrasi pemerintahan. Opini pro dan opini kontra terhadap Undang-Undang Cipta Kerja banyak dituangkan masyarakat Indonesia pada sosial media, dalam kasus ini Twitter. Penelitian yang dilakukan berguna untuk menganalisa opini masyarakat Indonesia di media sosial Twitter terhadap Undang-Undang Cipta Kerja dengan mengklasifikasi opini kedalam kelas positif atau negatif. Dengan menggunakan metode Naive Bayes Classifier, klasifikasi opini dilakukan oleh peneliti. Beberapa langkah yang dilakukan dalam penelitian yang diteliti kali ini yaitu pengumpulan data, pelabelan manual, preprocessing, term weighting, pemodelan, pengujian, dan evaluasi performa. Performa terbaik yang diperoleh oleh Naive Bayes Classifier adalah akurasi sebesar 89.9%, precision sebesar 90%, recall sebesar 89.9%, dan f-1 score sebesar 89.9%. Hasil yang didapat menunjukkan bahwa masyarakat Indonesia 52.9% kontra dan 47.1% pro terhadap Undang-Undang Cipta Kerja.Twitter is one of the most familiar social media that used by Indonesian. With that popularity, Twitter is one of a page to express publics opinions about the recent issues. Job Creation Law is the first Omnibus Law that was enacted in Indonesia and regulates employment, simplification of licensing, investment requirements, and government administration. Therefore, Job Creation Law received pros and cons from Indonesians on Twitter. The conducted research is to analyze publics opinions towards by classifying the opinions into positive or negative class. The opinions were classified using Naive Bayes Classifier method. The stages in this study are data collection, manual labeling, preprocessing, term weighting, classification modeling, testing, and performance evaluation. The performance obtained by Naive Bayes Classifier is 89.9% accuracy, 90% precision, 89.9% recall, and 89.9% f-1 score. The results showed that Indonesians are 52.9% against and 47.1% support Job Creation Law.
The advance of informational technology is expected to be a tool which helps data tabulating process. Management and usage of the data systematically can produce detailed information. The important of data management is able to enhance the quality of information that is processed. Data management is started from the storage system of data namely database design. In the database design, the thing that should be heeded is the relation of each table inside of it. The relation among the table shows the linkages data that will be processed to be essential information. In this research, the focused discussion is optimalizing a table for further tabulating towards a marketing informational system database. The database that will be optimalized will be used to marketing prediction tabulation. In tabulating stage, data prediction in database will be exported into two databases namely PostgreSQL and MariaDB. The data used for examining amount 476619 marketing data is taken from marketing transaction among 2015-2017. This research data is tabulated using join table that produce 374 data. The data is the information that will be used for marketing prediction. Based on rapidity examination of marketing data tabulation by using PostSQL indicates slight difference around 0.26 seconds faster than MariaDB. The research result of database optimalizing design which has been made shows that PostgreSQL is better in data tabulating rapidity than MariaDB
Cybercrimes often happened in social networking sites. Cyber-bullying is a form of cybercrime that recently trended in one of popular social networking sites, Twitter. The practice of cyber-bullying on teenager can cause depression, murderer or suicidal thoughts and it needs a preventing action so it will not harmful to the victim. To prevent cyber-bullying a text mining modelling can be done to classify tweets on Twitter into two classes, bullying class and not bullying class. On this research we use Naïve Bayes Classifier with five stages of pre-processing : replace tokens, transform case, tokenization, filter stopwords and n-grams. The validation process on this research used 10-Fold Cross Validation. To evaluate the performance of the model a Confusion Matrix table is used. The model on 10-Fold Cross Validation phase works well with 77,88% of precision , 94,75% of recall and 82,50% of accuracy with +/-5,12% of standard deviation.
Di Universitas Nusantara PGRI (UN PGRI) Kediri terdapat beberapa sistem informasi yang masih belum saling terintegrasi. Akibatnya terjadi redundansi data antar sistem informasi tersebut, contohnya adalah data mahasiswa. Seringkali terdapat perbedaan data yang seharusnya sama misalnya nama mahasiswa akibat input data yang sama dilakukan pada setiap aplikasi sistem informasi. Pada penelitian ini telah dirancang dan dibangun sistem integrasi data antara sistem informasi akademik dan sistem informasi ujian skripsi. Sistem informasi tersebut merupakan aplikasi berbasis web yang dibangun menggunakan bahasa pemrograman php dan database MySql. Data yang akan diintegrasikan adalah data mahasiswa. Integrasi data dibangun menggunakan RESTful web service, bahasa pemrograman php dan database MySql. Data request dan data respon webservice menggunakan format JSON.
Program pemerintah dalam menyejahterakan masyarakat salah satunya yaitu melaksanakan Program Keluarga Harapan (PKH). PKH adalah program bantuan bersyarat oleh pemerintah yang diberikan kepada Rumah Tangga Miskin (RTM). Tujuan dari program keluarga harapan yaitu meningkatkan kualitas hidup penerima bantuan melalui kualitas kesehatan, pendidikan dan kesejahteraan sosial. Desa Candirejo merupakan salah satu desa yang menerapkan program tersebut. Dalam penentuan penerima bantuan, terdapat 14 kriteria yang digunakan. Pada pemilihan penerima bantuan sering terjadi permasalahan, salah satunya yaitu proses penentuan penerima bantuan yang cukup lama dan timbulnya prasangka masyarakat terkait penerima bantuan dari program tersebut. Dalam membantu mengatasi permasalahan yang terjadi, maka dibutuhkan suatu sistem rekomendasi penerima bantuan menggunakan metode Simple Additive Weighting (SAW). Tujuan dari penelitian ini yaitu mempermudah dan mempercepat perangkat desa dalam menentukan penerima bantuan PKH secara objektiv. Metode SAW juga biasa disebut metode penjumlahan terbobot, dengan membobotkan semua alternatif dan kriteria yang akan menghasilkan nilai referensi yang tepat. Dari hasil perhitungan metode SAW menghasilkan nilai yang dapat dijadikan rekomendasi penerima bantuan yang layak dan tidak layak berdasarkan hasil perhitungan nilai alternatif serta beberapa kriteria dan bobot yang ditentukan.Program Keluarga Harapan (PKH) is one of the Indonesian Government programs to improve community welfare. PKH is a conditional sosial assistance program from the Government to Rumah Tangga Miskin (RTM). This program aims to improve their livelihoods through improving the quality of healthcare, education, and social welfare. Candirejo Village is one of the villages that has been carrying out the implementation of PKH. There are 14 criteria used to determine eligibility for PKH beneficiaries. A problem that often occurs when selecting PKH beneficiaries is the long process of determining beneficiaries and it evokes public prejudice towards PKH beneficiaries. A recommendation system for beneficiaries is needed to resolve this problem, using the Simple Additive Weighting (SAW) method. The main purpose of this research is to simplify and help the village apparatus determine PKH beneficiaries quickly and objectively. The SAW method is also known as the weighted addition method, by weighting the alternatives and criteria and will produce the precise reference values. The result can be used as a recommendation for eligible and ineligible PKH beneficiaries based on the results of the calculation of the alternatives and preferred weight values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.